2023-2024学年江苏省南京市上元中学九年级数学第一学期期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )
A.m≠1B.m=1C.m≥1D.m≠0
2.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为( )
A.150元B.160元C.170元D.180元
3.下列图像中,当时,函数与的图象时( )
A.B.C.D.
4.如图,双曲线的一个分支为( )
A.①B.②C.③D.④
5.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )
A.84株 B.88株 C.92株 D.121株
6.已知抛物线(其中是常数,)的顶点坐标为.有下列结论:
①若,则;
②若点与在该抛物线上,当时,则;
③关于的一元二次方程有实数解.
其中正确结论的个数是( )
A.B.C.D.
7.某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为( )
A.B.C.D.
8.在如图所示的网格中,每个小正方形的边长均为1,的三个顶点都是网格线的交点.已知,,将绕着点顺时针旋转,则点对应点的坐标为( )
A.B.C.D.
9.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为( )
A.30°B.15°C.10°D.20°
10.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.
12.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.
13.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________
14.如图,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,点A在反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_______.
15.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.
16.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
17.化简:________.
18.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.
三、解答题(共66分)
19.(10分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.
(1)如图1,若,则__________.
(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.
20.(6分)某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
21.(6分)解一元二次方程:
22.(8分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.
(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.
23.(8分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.
(1)求k的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;
(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
24.(8分)在平面直角坐标系xOy中,直线y=x+b(k≠0)与双曲线一个交点为P(2,m),与x轴、y轴分别交于点A,B两点.
(1)求m的值;
(2)求△ABO的面积;
25.(10分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
26.(10分)阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图,四边形ABCD,AD∥BC,AB=AD,E为对角线AC上一点,∠BEC=∠BAD=2∠DEC,探究AB与BC的数量关系.
某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现∠ACB=∠ABE”;
小源:“通过观察和度量,AE和BE存在一定的数量关系”;
小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB与BC的数量关系”.
……
老师:“保留原题条件,如图2, AC上存在点F,使DF=CF=AE,连接DF并延长交BC于点G,求的值”.
(1)求证:∠ACB=∠ABE;
(2)探究线段AB与BC的数量关系,并证明;
(3)若DF=CF=AE,求的值(用含k的代数式表示).
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、D
4、D
5、B
6、C
7、B
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、
13、 (4+)
14、-3
15、-1.
16、3或1.2
17、
18、15或10
三、解答题(共66分)
19、(1)88π;(2)BC长为;S的最小值为.
20、(1)45°;(2);(3)29.
21、,.
22、(1)见解析;(2)2
23、(1)且;(2)见解析,M(3,4) ;(3)△ABM的面积有最大值,
24、(1)m=4,(1)△ABO的面积为1.
25、(1)y与x的函数关系式为y=-x+150;(2)该批发商若想获得4000元的利润,应将售价定为70元;(3)该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为1元.
26、(1)见解析;(2)CB=2AB;(3)
售价x(元/千克)
…
50
60
70
80
…
销售量y(千克)
…
100
90
80
70
…
2023-2024学年江苏省南京市六校联考数学九年级第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年江苏省南京市六校联考数学九年级第一学期期末复习检测模拟试题含答案,共8页。
2023-2024学年江苏省南京市新城中学九年级数学第一学期期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省南京市新城中学九年级数学第一学期期末质量检测模拟试题含答案,共9页。
2023-2024学年江苏省南京市联合体九上数学期末复习检测模拟试题含答案: 这是一份2023-2024学年江苏省南京市联合体九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知二次函数y=x2﹣6x+m等内容,欢迎下载使用。