2023-2024学年江苏省苏州市市辖区九上数学期末达标检测试题含答案
展开
这是一份2023-2024学年江苏省苏州市市辖区九上数学期末达标检测试题含答案,共9页。试卷主要包含了已知抛物线,则下列说法正确的是,中,,,,的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
2.若,则的值为( )
A.B.C.D.
3.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,::25,则DE:=( )
A.2:5B.3:2C.2:3D.5:3
4.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是( )
A.4B.5C.6D.
5.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点M是边BC上一动点(不与B、C重合).过点M的双曲线(x>0)交AB于点N,连接OM、ON.下列结论:
①△OCM与△OAN的面积相等;
②矩形OABC的面积为2k;
③线段BM与BN的长度始终相等;
④若BM=CM,则有AN=BN.
其中一定正确的是( )
A.①④B.①②C.②④D.①③④
6.一元二次方程x2﹣4x = 0的根是( )
A.x1 =0,x2 =4B.x1 =0,x2 =﹣4C.x1 =x2 =2D.x1 =x2 =4
7.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是( )
A.△ABC是等腰三角形B.△ABC是等腰直角三角形
C.△ABC是直角三角形D.△ABC是一般锐角三角形
8.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( )
A.978×103B.97.8×104C.9.78×105D.0.978×106
9.已知抛物线,则下列说法正确的是( )
A.抛物线开口向下B.抛物线的对称轴是直线
C.当时,的最大值为D.抛物线与轴的交点为
10.中,,,,的值为( )
A.B.C.D.2
二、填空题(每小题3分,共24分)
11.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为______
12.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.
13.小刚身高,测得他站立在阳光下的影子长为,紧接着他把手臂竖直举起,测得影子长为,那么小刚举起的手臂超出头顶的高度为________.
14.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是个红珠子,个白珠子和个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续次摸出的都是红珠子的情况下,第次摸出红珠子的概率是_____.
15.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为_________cm.
16.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是__________
17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.
18.如图,直角三角形的直角顶点在坐标原点,若点在反比例函数的图像上,点在反比例函数的图像上,且,则_______.
三、解答题(共66分)
19.(10分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.
(l)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.
20.(6分)如图,在中,,点在边上,点在边上,且是的直径,的平分线与相交于点.
(1)证明:直线是的切线;
(2)连接,若,,求边的长.
21.(6分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用4800元购进A、B两种粽子共1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.
(1)求A,B两种粽子的单价;
(2)若计划用不超过8000元的资金再次购进A,B两种粽子共1800个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?
22.(8分)春节期间,支付宝“集五福”活动中的“集五福”福卡共分为5种,分别为富强福、和谐福、友善福、爱国福、敬业福,从国家、社会和个人三个层面体现了社会主义核心价值观的价值目标.
(1)小明一家人春节期间参与了支付宝“集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给他们其中一个人,两个人各设计了一个游戏,获胜者得到“敬业福”.
在一个不透明盒子里放入标号分别为1,2,3,4的四个小球,这些小球除了标号数字外都相同,将小球摇匀.
小明的游戏规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜.请判断,此游戏规则对小明和姐姐公平吗?说明理由.
姐姐的游戏规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.请用列表法或画树状图的方法进行判断此游戏规则对小明和姐姐是否公平.
(2)“五福”中体现了社会主义核心价值观的价值目标的个人层面有哪些?
23.(8分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.
问题发现:
当时,_____;当时,_____.
拓展探究:
试判断:当时,的大小有无变化?请仅就图2的情况给出证明.
问题解决:
当旋转至A、D、E三点共线时,直接写出线段BD的长.
24.(8分)如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
25.(10分)综合与探究
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为 ,点P的坐标为 ;
(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.
26.(10分)解方程:
(1)3(2x+1)2=108
(2)3x(x-1)=2-2x
(3)x2-6x+9=(5-2x)2
(4)x(2x-4)=5-8x
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、C
5、A
6、A
7、B
8、C
9、D
10、C
二、填空题(每小题3分,共24分)
11、3π
12、3
13、0.5
14、.
15、6
16、 (5,0)
17、115°
18、
三、解答题(共66分)
19、(1)反比例函数解析式为y=,一次函数解析式为y=x+3;(2)(﹣6,0).
20、(1)见解析;(2)12
21、(1)A种粽子单价为4元/个,B种粽子单价为4.1元/个;(2)A种粽子最多能购进100个
22、(1)游戏1对小明和姐姐是公平的;游戏2对小明和姐姐是公平的;(2)友善福、爱国福、敬业福.
23、(1)①;②;(2)的大小没有变化;(3)BD的长为:.
24、(1)y=﹣x2+x+2;(2)存在,点P坐标为(,4)或(,)或(,﹣).
25、(1);(1)△ABC是直角三角形,理由见解析;(3),;(4)存在,F1,F1.
26、(1)x1=,x2=;(2)x1=1,x2=;(3)x1 =,x2=2;(4)x1=, x2=
相关试卷
这是一份江苏省苏州市名校2023-2024学年数学九上期末达标检测模拟试题含答案,共10页。试卷主要包含了如图,,相交于点,等内容,欢迎下载使用。
这是一份江苏省苏州市星港学校2023-2024学年数学九上期末达标检测试题含答案,共9页。试卷主要包含了答题时请按要求用笔,如图所示几何体的主视图是等内容,欢迎下载使用。
这是一份江苏省苏州市市辖区2023-2024学年数学九上期末教学质量检测试题含答案,共6页。试卷主要包含了答题时请按要求用笔,反比例函数y=的图象经过点,一元二次方程的根的情况是等内容,欢迎下载使用。