2023-2024学年江西南昌石埠中学九年级数学第一学期期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是( )
A.开口向下B.对称轴是 x=﹣1
C.与 x 轴有两个交点D.顶点坐标是(1,2)
2.抛物线上部分点的横坐标、纵坐标的对应值如下表:
容易看出,是它与轴的一个交点,那么它与轴的另一个交点的坐标为( )
A.B.C.D.
3.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是( )
A.a+c=0
B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2
C.当函数在x<时,y随x的增大而减小
D.当﹣1<m<n<0时,m+n<
4.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
根据列表,可以估计出m的值是( )
A.8B.16C.24D.32
5.在Rt△ABC中,∠C=90°,若csB=,则∠B的度数是( )
A.90°B.60°C.45°D.30°
6.下列手机手势解锁图案中,是中心对称图形的是( )
A.B.C.D.
7.若点,,都在反比例函数的图象上,则,,的大小关系是( )
A.B.C.D.
8.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是( )
A.B.
C.D.
9.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是( )
A.把投影灯向银幕的相反方向移动B.把剪影向投影灯方向移动
C.把剪影向银幕方向移动D.把银幕向投影灯方向移动
10.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.
12.某班级中有男生和女生各若干,如果随机抽取1人,抽到男生的概率是,那么抽到女生的概率是_____.
13.一只不透明的袋子中装有红球和白球共个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有__________.
14.分解因式:__________.
15.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.
16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.
17.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.
18.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1 cm,则BF=__________cm.
三、解答题(共66分)
19.(10分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.
20.(6分)用适当的方法解下列方程:
(1)
(2)
21.(6分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
22.(8分)如图,已知⊙O的半径为5 cm,弦AB的长为8 cm,P是AB延长线上一点,BP=2 cm,求csP的值.
23.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
24.(8分)已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一个根.
25.(10分)(问题发现)如图1,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是 ;
(问题探究)如图2所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°.新区管委会想在路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,即分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.显然,为了快捷环保和节约成本,就要使线段PE、EF、FP之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF周长的最小值为 km;
(拓展应用)如图3是某街心花园的一角,在扇形OAB中,∠AOB=90°,OA=12米,在围墙OA和OB上分别有两个入口C和D,且AC=4米,D是OB的中点,出口E在上.现准备沿CE、DE从入口到出口铺设两条景观小路,在四边形CODE内种花,在剩余区域种草.
①出口E设在距直线OB多远处可以使四边形CODE的面积最大?最大面积是多少?(小路宽度不计)
②已知铺设小路CE所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是400元.
请问:在上是否存在点E,使铺设小路CE和DE的总造价最低?若存在,求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.
26.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、B
5、B
6、B
7、B
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、80π
12、
13、1
14、
15、2
16、1
17、
18、2+
三、解答题(共66分)
19、(1),(2);(3)(人)
20、(1), ;(2) ,
21、(1)详见解析;(2)AC=.
22、
23、(1)12m或16m;(2)195.
24、a=-3;另一个根为-1.
25、 [问题发现] 15;[问题探究] ;[拓展应用] ①出口E设在距直线OB的7.1米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB的距离为米.
26、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)
…
-3
-2
-1
0
1
…
…
-6
0
4
6
6
…
江西省南昌石埠初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案: 这是一份江西省南昌石埠初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果点A,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年江西省南昌石埠初级中学八年级数学第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年江西省南昌石埠初级中学八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各数是无理数的是,已知,则分式的值为等内容,欢迎下载使用。