2023-2024学年河北省廊坊市三河市九上数学期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是( )
A.-7B.7C.3D.-3
2.已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是( )
A.B.C.D.
3.抛物线y=(x﹣2)2+3的顶点坐标是( )
A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)
4.已知反比例函数,下列结论中不正确的是. ( )
A.图象必经过点(3,-2)B.图象位于第二、四象限
C.若,则D.在每一个象限内, 随值的增大而增大
5.抛物线的对称轴是( )
A.B.C.D.
6.小明利用计算机列出表格对一元二次方程进行估根如表:那么方程的一个近似根是( )
A.B.C.D.
7.如图,是的直径,弦于,连接、,下列结论中不一定正确的是( )
A.B.C.D.
8.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是( )
A.B.C.D.
9.如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是( )
A.点BB.点DC.点ED.点A
10.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为( )
A.米B.米C.米D.米
二、填空题(每小题3分,共24分)
11.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
12.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.
13.若点A(m,n)是双曲线与直线的交点,则_________.
14.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.
15.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC•AB;
③若AB=4,∠APE=30°,则的长为;
④若AC=3,BD=1,则有CM=DM=.
16.如图,如果将半径为的圆形纸片剪去一个圆心角为的扇形,用剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面圆半径为______.
17.若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为_____________.
18.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.
三、解答题(共66分)
19.(10分)在中,,.
(Ⅰ)如图Ⅰ,为边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.
求证:(1);
(2).
(Ⅱ)如图Ⅱ,为外一点,且,仍将线段绕点逆时针旋转得到,连接,.
(1)的结论是否仍然成立?并请你说明理由;
(2)若,,求的长.
20.(6分)已知二次函数.求证:不论为何实数,此二次函数的图像与轴都有两个不同交点.
21.(6分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)
22.(8分)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表格所示:
(1)求每月的利润W(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的总利润为480万元?
(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
23.(8分)如图,▱ABCD中,连接AC,AB⊥AC,tanB=,E、F分别是BC,AD上的点,且CE=AF,连接EF交AC与点G.
(1)求证:G为AC中点;
(2)若EF⊥BC,延长EF交BA的延长线于H,若FH=4,求AG的长.
24.(8分)一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.
(1)用树状图列出所有可能出现的结果;
(2)求3次摸到的球颜色相同的概率.
25.(10分)阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Lenhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴,∴②,
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
26.(10分)如图,射线表示一艘轮船的航行路线,从到的走向为南偏东30°,在的南偏东60°方向上有一点,处到处的距离为200海里.
(1)求点到航线的距离.
(2)在航线上有一点.且,若轮船沿的速度为50海里/时,求轮船从处到处所用时间为多少小时.(参考数据:)
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、A
4、C
5、D
6、C
7、C
8、A
9、D
10、D
二、填空题(每小题3分,共24分)
11、
12、1.
13、5
14、(0,).
15、①②④
16、cm
17、16 cm
18、1.
三、解答题(共66分)
19、(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6.
20、见解析
21、8.1m
22、(1);(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.
23、(1)见解析;(2)
24、(1)见解析;(2)
25、 (1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4).
26、(1)100海里(2)约为1.956小时
销售单价x(元)
…
25
30
35
40
…
每月销售量y(万件)
…
50
40
30
20
…
2023-2024学年河北省廊坊市三河市七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河北省廊坊市三河市七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河北省邯郸武安市九上数学期末统考模拟试题含答案: 这是一份2023-2024学年河北省邯郸武安市九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年河北省霸州市九上数学期末统考模拟试题含答案: 这是一份2023-2024学年河北省霸州市九上数学期末统考模拟试题含答案,共8页。