2023-2024学年江西省育华学校九年级数学第一学期期末经典试题含答案
展开
这是一份2023-2024学年江西省育华学校九年级数学第一学期期末经典试题含答案,共7页。试卷主要包含了已知点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是( )
A.相离B.相切C.相交D.以上三种情况都有可能
2.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是( )
A.B.C.D.
3.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.B.C.D.
4.若函数其几对对应值如下表,则方程(,,为常数)根的个数为( )
A.0B.1C.2D.1或2
5.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为( )
A.B.C.D.
6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A.B.C.-D.
7.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表.则甲、乙、丙3名运动员测试成绩最稳定的是()
A.甲B.乙C.丙D.3人成绩稳定情况相同
8.二次函数的图象是一条抛物线,下列说法中正确的是( )
A.抛物线开口向下B.抛物线经过点
C.抛物线的对称轴是直线D.抛物线与轴有两个交点
9.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是( )
A.代入法B.列举法C.从特殊到一般D.反证法
10.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是( )
A.y=xB.y=﹣C.y=x2D.y=﹣x2
二、填空题(每小题3分,共24分)
11.已知和是方程的两个实数根,则__________.
12.如图是二次函数y=ax2﹣bx+c的图象,由图象可知,不等式ax2﹣bx+c<0的解集是_______.
13.图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA的中点,若AB=4,BC=6,则图乙中阴影部分的面积为
_____.
14.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元. 设平均每次下调的百分率为,则可列方程为____________________.
15.正五边形的中心角的度数是_____.
16.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.
17.如图所示是某种货号的直三棱柱(底面是等腰直角三角形)零件的三视图,则它的表面积为__________
18.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为 .
三、解答题(共66分)
19.(10分)如图,在和中,,点为射线,的交点.
(1)问题提出:如图1,若,.
①与的数量关系为________;
②的度数为________.
(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.
20.(6分)解方程:
(1)用公式法解方程:3x2﹣x﹣4=1
(2)用配方法解方程:x2﹣4x﹣5=1.
21.(6分)如图,在平面直角坐标系中,正比例函数的图象与反比例函数的图象经过点.
(1)分别求这两个函数的表达式;
(2)将直线向上平移个单位长度后与轴交于,与反比例函数图象在第一象限内的交点为,连接,,求点的坐标及的面积.
22.(8分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.
(1)求证:△ABE∽△DEF;
(2)求EF的长.
23.(8分)解方程或计算
(1)解方程:3y(y-1)=2(y-1)
(2)计算:sin60°cs45°+tan30°.
24.(8分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.
①求证:四边形CODP是菱形.
②若AD=6,AC=10,求四边形CODP的面积.
25.(10分)如图,在平面直角坐标系中,的顶点坐标分别为, ,.
(1)的面积是_______;
(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;
(3)若为线段上的任一点,则变换后点的对应点的坐标为 _______.
26.(10分)永祚寺双塔,又名凌霄双塔,是山西省会太原现存古建筑中最高的建筑. 位于太原市城区东南向山脚畔.数学活动小组的同学对其中一塔进行了测量.测量方 法如下:如图所示,间接测得该塔底部点到地面上一点的距离为,塔的顶端 为点,且,在点处竖直放一根标杆,其顶端为,在的延长 线上找一点,使三点在同一直线上,测得.
(1)方法 1,已知标杆,求该塔的高度;
(2)方法 2,测得,已知,求该塔的高度.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、C
5、D
6、A
7、A
8、D
9、C
10、D
二、填空题(每小题3分,共24分)
11、1
12、x<-1或x>1
13、
14、
15、72°.
16、y1<y1
17、 (28+20)
18、2m
三、解答题(共66分)
19、(1);;(2)成立,理由见解析
20、(1)x1=,x2=-1;(2)x1=5,x2=-1.
21、(1);;(2)
22、(1)见解析;(2).
23、(1)y1=1 , y2=;(2)
24、①证明见解析;(2)S菱形CODP=24.
25、(1)12;(2)见解析;(3).
26、(1)55m;(2)54.5m
甲的成绩
乙的成绩
丙的成绩
环数
7
8
9
10
环数
7
8
9
10
环数
7
8
9
10
频数
4
6
6
4
频数
6
4
4
6
频数
5
5
5
5
相关试卷
这是一份江西省育华学校2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了正六边形的边心距与半径之比为,下列标志中是中心对称图形的是等内容,欢迎下载使用。
这是一份2023-2024学年江西省南昌育华学校数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了下列各数中,属于无理数的是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份2023-2024学年江西育华学校数学九上期末调研试题含答案,共7页。试卷主要包含了某班7名女生的体重,一元二次方程的根的情况为,已知,则代数式的值为,在中,,,,则的值为等内容,欢迎下载使用。