2023-2024学年河北省石家庄市第二十二中学九年级数学第一学期期末综合测试模拟试题含答案
展开
这是一份2023-2024学年河北省石家庄市第二十二中学九年级数学第一学期期末综合测试模拟试题含答案,共9页。试卷主要包含了的相反数是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在大小为的正方形网格中,是相似三角形的是( )
A.甲和乙B.乙和丙C.甲和丙D.乙和丁
2.如图,已知,,,的长为( )
A.4B.6C.8D.10
3.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是( )
A.100mB.100mC.150mD.50m
4.如图,这是二次函数的图象,则的值等于( )
A.B.C.D.
5.等腰直角△ABC内有一点P,满足∠PAB=∠PBC=∠PCA,若∠BAC=90°,AP=1.则CP的长等于( )
A.B.2C.2D.3
6.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是
A.B.C.D.
7.如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )
A.x<﹣2B.﹣2<x<4C.x>0D.x>4
8.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是( )
A.B.C.D.
9.的相反数是( )
A.B.C.D.
10.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,CE,若∠CBD=32°,则∠BEC的大小为( )
A.64°B.120°C.122°D.128°
二、填空题(每小题3分,共24分)
11.如图,由10个完全相同的正三角形构成的网格图中, 如图所示,则=______.
12.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .
13.若点,是抛物线上的两个点,则此抛物线的对称轴是___.
14.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.
15.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.
16.____.
17.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.
18.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.
三、解答题(共66分)
19.(10分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.
(1)求抛物线的解析式;
(2)直线与抛物线交于点与轴交于点求的面积;
(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.
20.(6分)在半圆O中,AB为直径,AC、AD为两条弦,且∠CAD+∠CAB=90°.
(1)如图1,求证:弧AC等于弧CD;
(2)如图2,点E在直径AB上,CE交AD于点F,若AF=CF,求证:AD=2CE;
(3)如图3,在(2)的条件下,连接BD,若AE=4,BD=12,求弦AC的长.
21.(6分)关于的一元二次方程
(1)若方程的一个根为1,求方程的另一个根和的值
(2)求证:不论取何实数,方程总有两个不相等的实数根.
22.(8分)如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.
23.(8分)如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.
(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.
24.(8分)如图,在ABC中,点D,E分别在边AC,AB上,且AE·AB=AD·AC,连接DE,BD.
(1)求证:ADE~ABC.
(2)若点E为AB为中点,AD:AE=6:5,ABC的面积为50,求BCD面积.
25.(10分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.
(1)小明选择补给站C(球王故里)的概率是多少?
(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.
26.(10分)为庆祝建国周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)补全条形统计图;
(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;
(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、A
4、D
5、B
6、B
7、B
8、A
9、D
10、C
二、填空题(每小题3分,共24分)
11、.
12、(x+1);.
13、x=3
14、1
15、3
16、
17、
18、m>﹣
三、解答题(共66分)
19、(1);(2);(3)
20、(1)详见解析;(2)详见解析;(3)4.
21、(1),另一个根是;(2)详见解析.
22、1m高
23、(1)y=x2﹣2x﹣1;(2)存在;M(1,﹣2);(1)(1+2,4)或(1﹣2 ,4)或(1,﹣4).
24、 (1)详见解析; (2)14
25、(1 );(2)
26、 (1)200人; “绘画”:35人,“舞蹈”:50人; ;
相关试卷
这是一份2023-2024学年河北省石家庄市裕华区实验中学数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法不正确的是,下列函数中,是二次函数的是等内容,欢迎下载使用。
这是一份2023-2024学年河北省石家庄市行唐县九年级数学第一学期期末综合测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程x2-4=0的解是等内容,欢迎下载使用。
这是一份河北省石家庄市长安区第二十二中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共7页。试卷主要包含了函数y=-x2-3的图象顶点是等内容,欢迎下载使用。