2023-2024学年河北省唐山市龙华中学数学九上期末综合测试试题含答案
展开
这是一份2023-2024学年河北省唐山市龙华中学数学九上期末综合测试试题含答案,共9页。试卷主要包含了下列图案中,是中心对称图形的是,如图,点A1的坐标为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.如图的的网格图,A、B、C、D、O都在格点上,点O是( )
A.的外心B.的外心C.的内心D.的内心
2.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是( )
A.4B.2C.1D.
3.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么等于( )
A.tanαB.sinaC.csαD.
4.下列图案中,是中心对称图形的是( )
A.B.C.D.
5.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=( )
A.80°B.100°C.110°D.120°
6.在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点 H 为垂足,设 AB=x,AD=y,则y 关于x 的函数关系用图象大致可以表示为 ( )
A.B.C.D.
7.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=1.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
8.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3,过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2017的横坐标为( )
A.B.0C.D.
9.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为3的圆与PB的位置关系是( )
A.相离B.相切
C.相交D.相切、相离或相交
10.如图,将△ABC绕点C顺时针方向旋转40°得△A’CB’,若AC⊥A’B’,则∠BAC等于( )
A.50°B.60°C.70°D.80°
二、填空题(每小题3分,共24分)
11.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.
12.用配方法解方程时,可配方为,其中________.
13.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是______.
14.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.
15.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.
16.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .
17.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.
18.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),
三、解答题(共66分)
19.(10分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.
(1)求的值;
(2)若,求直线的解析式;
(3)若,其它条件不变,直接写出与的位置关系.
20.(6分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
21.(6分)先化简,再求值:,其中a=2.
22.(8分)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量P(百千克)与销售价格x(元/千克)满足函数关系式p=x+1.从市场反馈的信息发现,该食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:
已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克,
(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种食材能全部售出;当每天的产量大于市场需求量时,只能售出市场需求的量,而剩余的食材由于保质期短作废弃处理;
①当每天的食材能全部售出时,求x的取值范围;
②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;
(3)在(2)的条件下,当x为多少时,y有最大值,并求出最大利润.
23.(8分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.
(1)求证:△DAE∽△DCF.
(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.
(3)当四边形EBFD为轴对称图形时,则cs∠AED的值为 .
24.(8分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是 .
25.(10分)已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.
(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;
(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;
(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.
26.(10分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.
(1)求m的值和双曲线对应的函数表达式;
(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、C
5、C
6、D
7、B
8、A
9、C
10、A
二、填空题(每小题3分,共24分)
11、1
12、-6
13、1.
14、25
15、2020
16、.
17、3.1
18、∠ACP=∠B(或).
三、解答题(共66分)
19、 (1) ; (2) ;(3) BC∥AD.
20、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
21、,2
22、(1)q=﹣x+14,其中2≤x≤10;(2)①2≤x≤4,②y=;(3)x=时取最大值,最大利润百元.
23、(1)见解析;(2)y=x+4;(3).
24、(1)作图见解析;(2)关于x轴对称.
25、(1)见解析;(2)见解析;(3)见解析.
26、(1)m=6,y=﹣; (2)k=﹣4或﹣2.
销售价格x(元/千克)
2
4
……
10
市场需求量q(百千克)
12
10
……
4
相关试卷
这是一份2023-2024学年西藏拉萨北京实验中学数学九上期末综合测试试题含答案,共8页。
这是一份2023-2024学年海南省邵逸夫中学数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若一次函数y=ax+b等内容,欢迎下载使用。
这是一份2023-2024学年河北唐山市龙华中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=等内容,欢迎下载使用。