2023-2024学年河南省南阳市名校数学九上期末质量跟踪监视模拟试题含答案
展开
这是一份2023-2024学年河南省南阳市名校数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是( )
A.B.C.D.
2.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是( )
A.100°B.110°C.120°D.130°
3.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是
A.B.C.D.
4.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0
5.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是
6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是( )
A.3:19B.C.3:D.4:21
7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为( )
A.300(1+x)2=1500B.300(1+2x)=1500
C.300(1+x2)=1500D.300+2x=1500
8.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是( )
A.3B.2C.1D.0
9.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为( )
A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1)D.(﹣2,﹣1)
10.顺次连接梯形各边中点所组成的图形是( )
A.平行四边形B.菱形C.梯形D.正方形
二、填空题(每小题3分,共24分)
11.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .
12.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
13.如图,在中,,,,点D、E分别是AB、AC的中点,CF是的平分线,交ED的延长线于点F,则DF的长是______.
14.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度(单位:)与水流喷出时间(单位:)之间的关系式为,那么水流从喷出至回落到水池所需要的时间是__________.
15.已知,则________
16.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.
17.在平面直角坐标系中,抛物线的图象如图所示.已知点坐标为,过点作轴交抛物线于点,过点作交抛物线于点,过点作轴交抛物线于点,过点作交抛物线于点……,依次进行下去,则点的坐标为_____.
18.已知为锐角,且,那么等于_____________.
三、解答题(共66分)
19.(10分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
20.(6分)在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.
21.(6分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
22.(8分)如图,在中,于,,,,分别是,的中点.
(1)求证:,;
(2)连接,若,求的长.
23.(8分)如图,在正方形网格上有以及一条线段.请你以为一条边.以正方形网格的格点为顶点画一个,使得与相似,并求出这两个三角形的相似比.
24.(8分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)
25.(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将右上表补充完整:(参考公式:方差)
(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;
(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
26.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、D
5、C
6、D
7、A
8、D
9、A
10、A
二、填空题(每小题3分,共24分)
11、.
12、 B
13、4
14、1
15、
16、;.
17、
18、
三、解答题(共66分)
19、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元
20、2.6cm
21、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元
22、(1)证明见解析;(2)EF=5.
23、图见解析,与的相似比是.
24、此时梯子的顶端与地面的距离A'D的长是米
25、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析
26、(1)证明见解析;(2)
等待时的频数间
乘车等待时间
地铁站
5≤t≤10
10<t≤15
15<t≤20
20<t≤25
25<t≤30
合计
A
50
50
152
148
100
500
B
45
215
167
43
30
500
平均数
方差
中位数
甲
7
① .
7
乙
② .
5.4
③ .
相关试卷
这是一份2023-2024学年河南省辉县数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图所示,几何体的左视图为,下列事件不属于随机事件的是,已知,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份2023-2024学年河南省濮阳市九级九上数学期末质量跟踪监视模拟试题含答案,共7页。
这是一份2023-2024学年广西省钦州市名校数学九上期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,方程x2=3x的解为等内容,欢迎下载使用。