2023-2024学年河南省商丘市五校联考九年级数学第一学期期末学业质量监测试题含答案
展开
这是一份2023-2024学年河南省商丘市五校联考九年级数学第一学期期末学业质量监测试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,如图,立体图形的俯视图是,下列运算正确的是,二次函数图象的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如果,那么下列比例式中正确的是( )
A.B.C.D.
2.下列命题为假命题的是( )
A.直角都相等B.对顶角相等
C.同位角相等D.同角的余角相等
3.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为( )
A.20°B.25°C.30°D.35°
4.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.平行四边形B.圆C.等边三角形D.正五边形
5.如图,一段抛物线,记为抛物线,它与轴交于点;将抛物线绕点旋转得抛物线,交轴于点;将抛物线绕点旋转得抛物线,交轴于点.···如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则的值为( )
A.B.C.D.
6.如图,立体图形的俯视图是( )
A.B.C.D.
7.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
A.AB.BC.CD.D
8.下列运算正确的是( )
A.B.C.D.
9.二次函数图象的顶点坐标是( )
A.B.C.D.
10.下列图形中,绕某个点旋转72度后能与自身重合的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.计算:__________.
12.已知关于x的分式方程有一个正数解,则k的取值范围为________.
13.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB 为______________.
14.记函数的图像为图形,函数的图像为图形,若N与没有公共点,则的取值范围是___________.
15.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为_____.
16.如图,点是反比例函数的图象上的一点,过点作平行四边形,使点、在轴上,点在轴上,则平行四边形的面积为______.
17.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠C=40°,OA=9,则的长为 .(结果保留π)
18.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是 .
三、解答题(共66分)
19.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
20.(6分)已知二次函数的图像是经过、两点的一条抛物线.
(1)求这个函数的表达式,并在方格纸中画出它的大致图像;
(2)点为抛物线上一点,若的面积为,求出此时点的坐标.
21.(6分)己知:如图,抛物线与坐标轴分别交于点, 点是线段上方抛物线上的一个动点,
(1)求抛物线解析式:
(2)当点运动到什么位置时,的面积最大?
22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:
(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;
(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
23.(8分)(1)解方程:
(2)已知关于的方程无解,方程的一个根是.
①求和的值;
②求方程的另一个根.
24.(8分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作 d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.
(1)当⊙O的半径为2时,
①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直线与⊙O互为“可及图形”,求b的取值范围;
(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.
25.(10分)定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;
(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分线,
①求证:△BDC是“近直角三角形”;
②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
26.(10分)在⊙O中,AB为直径,C为⊙O上一点.
(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;
(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、B
5、D
6、C
7、C
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、k
相关试卷
这是一份浙江杭州上城区七校联考2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年广东省深圳南山区五校联考九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。
这是一份黑龙江省哈尔滨香坊区五校联考2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。