2023-2024学年湖南省长沙市浏阳市数学九年级第一学期期末检测模拟试题含答案
展开
这是一份2023-2024学年湖南省长沙市浏阳市数学九年级第一学期期末检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线与x轴相交于点A,B,抛物线 的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为( )
A.B.C.D.
2.如图是某个几何体的三视图,该几何体是( )
A.长方体B.圆锥C.三棱柱D.圆柱
3.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则csB的值是( )
A.
B.
C.
D.
4.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为( )
A.B.
C.D.
5.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4B.4C.6D.8
6.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则( )
A.B.C.D.
7.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.B.C.D.
8.如图,在△ABC中,点D、E分别在边BA、CA的延长线上, =2,那么下列条件中能判断DE∥BC的是( )
A.B.C.D.
9.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )
A.0 B.-1 C.1 D.2
10.抛物线 的顶点坐标是( )
A.(2,1)B.C.D.
二、填空题(每小题3分,共24分)
11.如果关于的一元二次方程的一个解是,则________.
12.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为 .
13.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______.
14.如图,在坐标系中放置一菱形,已知,,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,,,…,则的坐标为__________.
15.要使二次根式有意义,则的取值范围是________.
16.随着信息化时代的到来,微信支付、支付宝支付、QQ红包支付、银行卡支付等各种便捷支付已经成为我们生活中的一部分,某学校某宿舍的5名同学,有3人使用微信支付,2人使用支付宝支付,问从这5人中随机抽出两人,使用同一种支付方式的概率是_____.
17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.
18.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;
三、解答题(共66分)
19.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.
(1)填空:点B的坐标为 (用含m的代数式表示);
(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:
①求抛物线的解析式(用含m的代数式表示);
②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.
20.(6分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.
21.(6分)已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.
(1)如图1所示,当时,求的长;
(2)如图2所示,当时,求的长;
(3)请写出线段的长的取值范围,及当的长最大时的长.
22.(8分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:
①旋转角的度数 ;线段OD的长为 .
②求∠BDC的度数;
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
23.(8分)在全校的科技制作大赛中,王浩同学用木板制作了一个带有卡槽的三角形手机架.如图所示,卡槽的宽度DF与内三角形ABC的AB边长相等.已知AC=20cm,BC=18cm,∠ACB=50°,一块手机的最长边为17cm,王浩同学能否将此手机立放入卡槽内?请说明你的理由(参考数据:sin50°≈0.8,cs50°≈0.6,tan50°≈1.2)
24.(8分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:
(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;
(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
25.(10分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.
(1)直接写出M、N的坐标及k的值;
(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;
(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.
26.(10分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.
(1)求的长;
(2)当时,求点的坐标;
(3)当面积是四边形面积的2倍时,求点的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、B
5、B
6、C
7、A
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、.
13、2
14、(2326,0)
15、x≥1
16、
17、
18、6
三、解答题(共66分)
19、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.
20、
21、(1);(2);(3)
22、(1)①,4;②;(2),证明见解析.
23、王浩同学能将手机放入卡槽DF内,理由见解析
24、(1);(2)亏损,赔了110万元
25、(1)M(1,4),N(4,1),k=4;(2)(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2);(3)(,5)或(,3).
26、(1)6;(2);(3)或
销售单价(元)
200
230
250
年销售量(万件)
14
11
9
相关试卷
这是一份湖南省长沙市浏阳市浏阳河中学2023-2024学年数学九上期末质量检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,抛物线与坐标轴的交点个数是等内容,欢迎下载使用。
这是一份湖南省浏阳市部分学校2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在下列各式中,运算结果正确的是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市名校数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了下表是二次函数的的部分对应值,用配方法解方程,方程应变形为等内容,欢迎下载使用。