2023-2024学年甘肃省民勤县第六中学数学九上期末复习检测模拟试题含答案
展开
这是一份2023-2024学年甘肃省民勤县第六中学数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了下列两个图形,二次函数图象的顶点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是( )
A.AC∥ODB.
C.△ODE∽△ADOD.
2.已知函数y=ax2+bx+c(a≠0)的图象如图,则函数y=ax+b与y=的图象大致为( )
A.B.
C.D.
3.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是( )
A.4个B.5个C.不足4个D.6个或6个以上
4.有甲、乙、丙、丁四架机床生产一种直径为20mm圆柱形零件,从各自生产的零件中任意抽取10件进行检测,得出各自的平均直径均为20mm,每架机床生产的零件的方差如表:
则在这四台机床中生产的零件最稳定的是( ).
A.甲B.乙C.丙D.丁
5.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )
A.B.C.D.
6.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A.B.C.D.
7.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有( )
A.2组
B.3组
C.4组
D.5组
8.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )
A.3.5B.4.2C.5.8D.7
9.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为( )
A.40mB.80mC.120mD.160m
10.二次函数图象的顶点坐标是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.
12..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.
13.若a、b、c、d满足,则=_____.
14.函数y=(m为常数)的图象上有三点(﹣1,y1)、、,则函数值y1、y2、y3的大小关系是_____.(用“<”符号连接)
15.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).
16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .
17.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.
18.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为_____.
三、解答题(共66分)
19.(10分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?
20.(6分)在数学活动课上,同学们用一根长为1米的细绳围矩形.
(1)小明围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的长和宽各是多少?
(2)小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.
21.(6分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
22.(8分)已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
23.(8分)如图:在平面直角坐标系中,点.
(1)尺规作图:求作过三点的圆;
(2)设过三点的圆的圆心为M,利用网格,求点M的坐标;
(3)若直线与相交,直接写出的取值范围.
24.(8分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.
用“转化”的数学思想,我们还可以解一些新的方程.
例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.
再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:. 因为,且,所以不是原方程的根,是原方程的解.
(1)问题:方程的解是,__________,__________;
(2)拓展:求方程的解.
25.(10分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
26.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、A
5、A
6、B
7、A
8、D
9、D
10、B
二、填空题(每小题3分,共24分)
11、.
12、4
13、
14、y2<y1<y1
15、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)
16、.
17、2.
18、2或﹣2
三、解答题(共66分)
19、树高为米.
20、(1)20,30;(2)用这根细绳围成一个边长为25㎝的正方形时,其面积最大,最大面积是625
21、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.
22、⑴m的最大整数值为m=1
(2)x12+x22-x1x2= 5
23、(1)见解析;(2)M(1,3);(3)
24、(1);(2)
25、(1);(2) .
26、⊙O的半径为.
机床型号
甲
乙
丙
丁
方差mm2
0.012
0.020
0.015
0.102
相关试卷
这是一份甘肃省武威市民勤县2023-2024学年九上数学期末质量检测试题含答案,共8页。
这是一份2023-2024学年甘肃省嘉峪关市第六中学数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了已知点 P1,方程的根是等内容,欢迎下载使用。
这是一份2023-2024学年甘肃省镇原县九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了已知2x=3y等内容,欢迎下载使用。