2023-2024学年福建省浦城县荣华实验学校数学九上期末质量检测试题含答案
展开
这是一份2023-2024学年福建省浦城县荣华实验学校数学九上期末质量检测试题含答案,共7页。试卷主要包含了对于二次函数,下列说法正确的是,设是方程的两个实数根,则的值为,将二次函数化为的形式,结果为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.2的相反数是( )
A.B.C.D.
2.已知关于的一元二次方程的两个根分别是,,且满足,则的值是( )
A.0B.C.0或D.或0
3.△ABC的外接圆圆心是该三角形( )的交点.
A.三条边垂直平分线B.三条中线
C.三条角平分线D.三条高
4.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
5.设是方程的两个实数根,则的值为( )
A.2017B.2018C.2019D.2020
6.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是( )
A.100°B.80°C.60°D.50°
7.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( )
A.2.4mB.24mC.0.6mD.6m
8.能判断一个平行四边形是矩形的条件是( )
A.两条对角线互相平分B.一组邻边相等
C.两条对角线互相垂直D.两条对角线相等
9.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为 ( )
A.(2,2)B.(2,4)C.(4,2)D.(1,2)
10.将二次函数化为的形式,结果为( )
A. B.
C.D.
二、填空题(每小题3分,共24分)
11.已知在中,,,,那么_____________.
12.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.
13.方程的解是________.
14.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是 .
15.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 .
16.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.
17.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.
18.如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是__________.
三、解答题(共66分)
19.(10分)如图1,在中,,,,点是边上一个动点(不与、重合),点为射线上一点,且,以点为圆心,为半径作,设.
(1)如图2,当点与点重合时,求的值;
(2)当点在线段上,如果与的另一个交点在线段上时,设,试求与之间的函数解析式,并写出的取值范围;
(3)在点的运动过程中,如果与线段只有一个公共点,请直接写出的取值范围.
20.(6分)(1)计算:
(2)化简:
21.(6分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.
(1)求证:是的切线;
(2)若的半径为2,求图中阴影部分的面积.
22.(8分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.
(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;
(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.
23.(8分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?
24.(8分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.
(1)求二次函数的关系式;
(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,
①求S与m的函数关系式,写出自变量m的取值范围.
②当S取得最值时,求点P的坐标;
(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
25.(10分)如图,一次函数的图象分别交x轴、y轴于C,D两点,交反比例函数图象于A(,4),B(3,m)两点.
(1)求直线CD的表达式;
(2)点E是线段OD上一点,若,求E点的坐标;
(3)请你根据图象直接写出不等式的解集.
26.(10分)在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、A
4、B
5、D
6、B
7、D
8、D
9、B
10、D
二、填空题(每小题3分,共24分)
11、1
12、35°
13、 .
14、m≤且m≠1.
15、1
16、4(1+x)2=5.1
17、1
18、3或1
三、解答题(共66分)
19、(1);(2);(3)当或或时,与线段只有一个公共点.
20、(1)1;(2)
21、(1)见解析
(2)图中阴影部分的面积为π.
22、(1);(2)
23、(1)y=﹣10x+800;(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元
24、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,点P的坐标为(,3)或(﹣3+3,12﹣6).
25、(1);(2);(3)或
26、(2)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为2;(3)点Q坐标为:(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).
销售单价(元/件)
…
30
40
50
60
…
每天销售量(件)
…
500
400
300
200
…
相关试卷
这是一份福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的两根分别为,抛物线y=22﹣1的顶点坐标是等内容,欢迎下载使用。
这是一份福建省宁德市名校2023-2024学年九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题正确的是,下列方程中不是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年福建省厦门市五缘第二实验学校数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列说法正确的是,抛物线y=,方程的根是等内容,欢迎下载使用。