2023-2024学年福建省厦门市五缘第二实验学校数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,该几何体的主视图是( )
A.B.C.D.
2.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为( )
A.B.C.D.1
3.对于一元二次方程来说,当时,方程有两个相等的实数根:若将的值在的基础上减小,则此时方程根的情况是( )
A.没有实数根B.两个相等的实数根
C.两个不相等的实数根D.一个实数根
4.如图图形中,是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
5.已知正方形的边长为4cm,则其对角线长是()
A.8cmB.16cmC.32cmD.cm
6.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为( )
A.10πB.
C.πD.π
7.下列说法正确的是( )
A.对应边都成比例的多边形相似B.对应角都相等的多边形相似
C.边数相同的正多边形相似D.矩形都相似
8.抛物线y=(x﹣2)2﹣3的顶点坐标是( )
A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)
9.方程的根是( )
A.2B.0C.0或2D.0或3
10.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是( )
A.B.2≤OP≤4C.≤OP≤D.3≤OP≤4
二、填空题(每小题3分,共24分)
11.抛物线的顶点坐标是______.
12.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本________(填“具有”或“不具有”)代表性.
13.把抛物线y=2x2向上平移3个单位,得到的抛物线的解析式为_______________.
14.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.
15.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得,,而且此时测得高的杆的影子长,则旗杆的高度约为__________.
16.如图,AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则OE的长为______.
17.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.
18.2sin30°+tan60°×tan30°=_____.
三、解答题(共66分)
19.(10分)如图,抛物线与轴相交于两点,点在点的右侧,与轴相交于点.
求点的坐标;
在抛物线的对称轴上有一点,使的值最小,求点的坐标;
点为轴上一动点,在抛物线上是否存在一点,使以四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.
20.(6分)如图,反比例函数的图象与一次函数的图象相交于点和点.
(1)求反比例函数的解析式和点的坐标;
(2)连接,,求的面积.
(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量的取值范围.
21.(6分)镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?
22.(8分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
23.(8分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:
(1)将上面的表格填充完整;
(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;
(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?
24.(8分)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标;
(2)求△ABC的面积.
25.(10分)如图,是由6个棱长相同的小正方形组合成的几何体.
(1)请在下面方格纸中分别画出它的主视图和俯视图;
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)
26.(10分)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.
第一环节:写字注音、成语故事、国学常识、成语接龙(分别用表示);
第二环节:成语听写、诗词对句、经典通读(分别用表示)
(1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果
(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、D
5、D
6、C
7、C
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、(0,-3).
12、不具有
13、
14、
15、1
16、6
17、2
18、2
三、解答题(共66分)
19、(1),;(2);(3)点的坐标为,或.
20、(1),点的坐标为;(2);(3)或.
21、54
22、(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为1.
23、(1)见解析;(2)w=﹣10x2+280x﹣1600;(3)售价为14元时,获得最大利润,最大利润是360元.
24、(1)A点坐标为(﹣1,3),B点坐标为(3,﹣1);
(2)S△ABC=1.
25、图形见详解.
26、(1)见解析(2)
售价x(元件)
10
11
12
13
14
x
销售量y(件)
100
90
80
70
福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案: 这是一份福建省厦门市六校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的两根分别为,抛物线y=22﹣1的顶点坐标是等内容,欢迎下载使用。
福建省厦门市五缘第二实验学校2023-2024学年数学八年级第一学期期末复习检测模拟试题含答案: 这是一份福建省厦门市五缘第二实验学校2023-2024学年数学八年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了下列命题是假命题的是,下列说法正确的是,如图,中的周长为等内容,欢迎下载使用。
福建省厦门市五缘实验学校2023-2024学年上学期七年级10月月考数学试题: 这是一份福建省厦门市五缘实验学校2023-2024学年上学期七年级10月月考数学试题,共4页。