2023-2024学年山东省利津县九年级数学第一学期期末学业水平测试试题含答案
展开
这是一份2023-2024学年山东省利津县九年级数学第一学期期末学业水平测试试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列图案中是中心对称图形的有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有( )
A.8个B.7个C.3个D.2个
2.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是( )
A.m+n<0B.m+n>0C.m<nD.m>n
3.己知a、b、c均不为0,且,若,则k=( )
A.-1B.0C.2D.3
4.观察下列图形,是中心对称图形的是( )
A.B.C.D.
5.下列一元二次方程中有两个不相等的实数根的方程是( )
A.(x+2)2=0B.x2+3=0C.x2+2x-17=0D.x2+x+5=0
6.下列图案中是中心对称图形的有( )
A.1个B.2个C.3个D.4个
7.下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
8.如图,菱形中,,,且,连接交对角线于.则的度数是( )
A.100°B.105°C.120°D.135°
9.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( )
A.B.C.D.
10.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为
A.B.5C.4D.3
二、填空题(每小题3分,共24分)
11.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元. 设平均每次下调的百分率为,则可列方程为____________________.
12.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机柚取100件进行检测,检测出次品5件,由此估计这一批产品中的次品件数是_____.
13.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为 .
14.若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.
15.若关于的一元二次方程没有实数根.化简:=____________.
16.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.
17.如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,,,,则四边形的面积为__________;
18.在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_____.
三、解答题(共66分)
19.(10分)有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.
20.(6分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).
(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?
(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?
21.(6分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.
22.(8分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
23.(8分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1
(1)线段A1B1的长是 ∠AOA1的度数是
(2)连结AA1,求证:四边形OAA1B1是平行四边形 ;
(3)求四边形OAA1B1的面积 .
24.(8分)已知某二次函数图象上部分点的横坐标、纵坐标的对应值如下表.求此函数表达式.
25.(10分)为了传承中华优秀传统文化,培养学生自主、团结协作能力,某校推出了以下四个项目供学生选择:.家乡导游;.艺术畅游;.体育世界;.博物旅行.学校规定:每个学生都必须报名且只能选择其中一个项目.学校对某班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解答下列问题:
(1)该班学生总人数是______人;
(2)将条形统计图补充完整,并求项目所在扇形的圆心角的度数;
(3)老师发现报名参加“博物旅行”的学生中恰好有两名男生,现准备从这些参加“博物旅行”的学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
26.(10分)如图,是的角平分线,延长至点使得.求证:.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、D
4、C
5、C
6、B
7、A
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、
12、500
13、160°.
14、30º
15、
16、< < >
17、32
18、
三、解答题(共66分)
19、(1)所有结果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).
20、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.
21、或
22、tanC=;BC=1
23、(1)6,90;(2)见解析;(3)1
24、
25、(1)50;(2)作图见解析,;(3).
26、证明见解析.
相关试卷
这是一份山东省禹城市2023-2024学年数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,关于的方程有实数根,则满足,下列说法正确的是,3的倒数是等内容,欢迎下载使用。
这是一份山东省济宁市名校2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了已知二次函数y=a等内容,欢迎下载使用。
这是一份山东省临朐县2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。