2023-2024学年广东省揭阳真理中学数学九年级第一学期期末学业水平测试试题含答案
展开
这是一份2023-2024学年广东省揭阳真理中学数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了下列事件是必然事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为( )
A.B.C.D.
2.如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为( )
A.B.C.D.
3.方程的根是( )
A.5和B.2和C.8和D.3和
4.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为( )
A.直线x=1B.直线x=﹣2C.直线x=﹣1D.直线x=﹣4
5.如图,点在以为直径的半圆上,点为圆心,,则的度数为( )
A.B.C.D.
6.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是( )
A.4B.2C.1D.
7.如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是( )
A.20°B.25°C.30°D.40°
8.如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是( )
A.B.C.D.
9.二次函数的图象是一条抛物线,下列说法中正确的是( )
A.抛物线开口向下B.抛物线经过点
C.抛物线的对称轴是直线D.抛物线与轴有两个交点
10.下列事件是必然事件的是( )
A.任意购买一张电影票,座号是“7排8号”B.射击运动员射击一次,恰好命中靶心
C.抛掷一枚图钉,钉尖触地D.13名同学中,至少2人出生的月份相同
二、填空题(每小题3分,共24分)
11.设、是方程的两个实数根,则的值为_____.
12.如图,D在矩形ABCD中,AB=4,BC=6,E是边AD一个动点,将△ABE沿BE对折成△BEF,则线段DF长的最小值为_____.
13.函数沿直线翻折所得函数解析式为_____________.
14.已知cs( a-15°)=,那么a=____________
15.已知反比例函数,当_______时,其图象在每个象限内随的增大而增大.
16.如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cs∠EFB的值为____.
17.如图,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的长为_____.
18.如图,AB为⊙O的直径,C,D 是⊙O上两点,若∠ABC=50°,则∠D的度数为______.
三、解答题(共66分)
19.(10分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;
(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;
(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.
20.(6分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
21.(6分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF
(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.
(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.
22.(8分)如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:
(1)设的面积为,求与之间的函数关系式,的最大值是 ;
(2)当的值为 时,是等腰三角形.
23.(8分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
24.(8分)重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一.体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级(不包括90),90~120范围内的记为C级(不包括120),120~150范围内的记为B级(不包括150),150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:
(1)在这次测试中,一共抽取了 名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为 度.
(2)王攀同学在这次测试中1分钟垫球140个.他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:
(垫球个数计数原则:120<垫球个数≤125记为125,125<垫球个数≤130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况.
25.(10分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?
26.(10分)某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.
(1)第一次购进的甲、乙两种水果各多少千克?
(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、C
5、B
6、C
7、C
8、A
9、D
10、D
二、填空题(每小题3分,共24分)
11、-1
12、
13、
14、45°
15、
16、
17、9
18、40°.
三、解答题(共66分)
19、(1);(2)△BPC面积的最大值为 ;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)
20、 (1) 4800元;(2) 降价60元.
21、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析
22、(1);(2)或或
23、 (1);(2).
24、(1)100,54;(2)王攀同学的1分钟垫球个数在年级排名是34名到42名之间
25、 (1) y=﹣2x2+400x+25000, 0<x≤1,且x为正整数;(2) 件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3) 每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元
26、(1)第一次购进甲种水果200千克,购进乙种水果10千克;(2)m的值为1.
成绩(个)
120
125
130
135
140
145
人数(频数)
2
8
3
10
9
8
相关试卷
这是一份广东省揭阳市普宁市2023-2024学年九年级数学第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,观察下列等式,一元二次方程的解的情况是等内容,欢迎下载使用。
这是一份广东省揭阳榕城真理中学2023-2024学年数学九上期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,真命题是等内容,欢迎下载使用。
这是一份2023-2024学年广东省茂名市行知中学数学九年级第一学期期末学业水平测试试题含答案,共7页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。