2023-2024学年贵州省桐梓县数学九上期末综合测试模拟试题含答案
展开
这是一份2023-2024学年贵州省桐梓县数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了已知二次函数的解析式为,一元二次方程的根的情况是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知函数是的图像过点,则的值为( )
A.-2B.3C.-6D.6
2.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是( )
A.B.C.D.
3.已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是( ).
A.1B.2C.3D.4
4.一元二次方程x2﹣4x+5=0的根的情况是( )
A.没有实数根B.只有一个实数根
C.有两个相等的实数根D.有两个不相等的实数根
5.一元二次方程的根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.不能确定
6.若正六边形的半径长为4,则它的边长等于( )
A.4B.2C.D.
7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141°B.144°C.147°D.150°
8.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是( )
A.B.C.D.
9.对于实数,定义运算“*”;关于的方程恰好有三个不相等的实数根,则的取值范围是( )
A.B.
C.D.
10.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.
12.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.
13.抛物线y=(x+2)2+1的顶点坐标为_____.
14.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.
15.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.
16.反比例函数图像经过点(2,-3),则它的函数表达式是 .
17.如图,在平行四边形中,点、在双曲线上,点的坐标是,点在坐标轴上,则点的坐标是___________.
18.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)
三、解答题(共66分)
19.(10分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
20.(6分)如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sinB=,tanA=,AC=,
(1)求∠B 的度数和 AB 的长.
(2)求 tan∠CDB 的值.
21.(6分)某影城装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数的关系:y=﹣2x+240(50≤x≤80),x是整数,影院每天运营成本为2200元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本)
(1)试求w与x之间的函数关系式;
(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?
22.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=1.连接OA、AB,且OA=AB=2.
(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.
①连接AC,求△ABC的面积;
②在图上连接OC交AB于点D,求的值.
23.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
24.(8分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).
25.(10分)如图,点O为∠ABC的边上的一点,过点O作OM⊥AB于点,到点的距离等于线段OM的长的所有点组成图形.图形W与射线交于E,F两点(点在点F的左侧).
(1)过点作于点,如果BE=2,,求MH的长;
(2)将射线BC绕点B顺时针旋转得到射线BD,使得∠,判断射线BD与图形公共点的个数,并证明.
26.(10分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).
(1)求B、C坐标;
(2)求证:BA⊥AC;
(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、A
5、B
6、A
7、B
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、3500
12、1
13、(﹣2,1)
14、6cm
15、1
16、.
17、
18、
三、解答题(共66分)
19、此时快艇与岛屿C的距离是20nmile.
20、(1)∠B的度数为45°,AB的值为3;(1)tan∠CDB的值为1.
21、(1)w=﹣2x2+240x﹣2200(50≤x≤80);(2)影院将电影票售价定为60元/张时,每天获利最大,最大利润是1元.
22、(1)k=12;(2)①3;②
23、(1)画图见解析,A1(﹣1,4),B1(1,4);(2).
24、广告牌的高度为54.6米.
25、(1)MH=;(2)1个.
26、(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.
相关试卷
这是一份贵州省遵义市桐梓县2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列说法中正确的有,如图,是用棋子摆成的“上”字, 见解析,B2,C2等内容,欢迎下载使用。
这是一份贵州省桐梓县联考2023-2024学年数学九上期末联考试题含答案,共8页。
这是一份贵州省安顺市名校2023-2024学年数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了下列各说法中等内容,欢迎下载使用。