2023-2024学年黑龙江省大庆杜尔伯特县联考数学九上期末复习检测模拟试题含答案
展开
这是一份2023-2024学年黑龙江省大庆杜尔伯特县联考数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,函数y=mx2+,抛物线y=22﹣1的顶点坐标是,如图所示的几何体的主视图为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是( )
A.B.C.D.
2.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )
A.取时的函数值小于0
B.取时的函数值大于0
C.取时的函数值等于0
D.取时函数值与0的大小关系不确定
3.已知二次函数y=x2﹣6x+m(m是实数),当自变量任取x1,x2时,分别与之对应的函数值y1,y2满足y1>y2,则x1,x2应满足的关系式是( )
A.x1﹣3<x2﹣3B.x1﹣3>x2﹣3C.|x1﹣3|<|x2﹣3|D.|x1﹣3|>|x2﹣3|
4.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为( )
A.-3B.-4C.3D.7
5.已知二次函数自变量的部分取值和对应函数值如表:
则在实数范围内能使得成立的取值范围是( )
A.B.C.D.或
6.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为( )
A.0B.0或2C.0或2或﹣2D.2或﹣2
7.如图,,直线与这三条平行线分别交于点和点.已知AB=1,BC=3,DE=1.2,则DF的长为( )
A.B.C.D.
8.抛物线y=2(x﹣2)2﹣1的顶点坐标是( )
A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,1)
9.在平面直角坐标系中,点,,过第四象限内一动点作轴的垂线,垂足为,且,点、分别在线段和轴上运动,则的最小值是( )
A.B.C.D.
10.如图所示的几何体的主视图为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________
12.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.
13.已知=4,=9,是的比例中项,则=____.
14.如图,已知点是函数图象上的一个动点.若,则的取值范围是__________.
15.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.
16.二次函数y=4(x﹣3)2+7的图象的顶点坐标是_____.
17.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.
18.已知二次函数y=-x2+2x+1,若y随x增大而增大,则x的取值范围是____.
三、解答题(共66分)
19.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
20.(6分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)
已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.
(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分;
(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.
21.(6分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;
(2)当点在上时.
①求证:;
②如图2,在上取一点,使,连结.求证:;
(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.
22.(8分)关于的一元二次方程.
(1)求证:此方程必有两个不相等的实数根;
(2)若方程有一根为1,求方程的另一根及的值.
23.(8分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:
甲:8,8,7,8,1.乙:5,1,7,10,1.
甲、乙两同学引体向上的平均数、众数、中位数、方差如下:
根据以上信息,回答下列问题:
(1)表格中_______,_______,_______.(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_______________________________________.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_______________________________________.
(3)乙同学再做一次引体向上,次数为n,若乙同学6次引体向上成绩的中位数不变,请写出n的最小值.
24.(8分)如图,抛物线(,b是常数,且≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(-1,0),B(3,0)
(1)①求抛物线的解析式;②顶点D的坐标为_______;③直线BD的解析式为______;
(2)若P为线段BD上的一个动点,其横坐标为m,过点P作PQ⊥x轴于点Q,求当m为何值时,四边形PQOC的面积最大?
(3)若点M是抛物线在第一象限上的一个动点,过点M作MN∥AC交轴于点N.当点M的坐标为_______时,四边形MNAC是平行四边形.
25.(10分)在一空旷场地上设计一落地为矩形的小屋,,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.
(1)如图1,若,则__________.
(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.
26.(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).
①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
已知:在四边形ABCD中,____________.
求证:四边形ABCD是平行四边形.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、A
5、C
6、C
7、B
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、秒或1秒
12、
13、±6;
14、
15、y=-(x﹣4)2+1
16、(3,7)
17、11.25
18、x≤1
三、解答题(共66分)
19、(1);(2)200;(3)150元, 最高利润为5000元,
20、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;
乙的数学成绩在100分以上(含100分)的次数更多.
21、(1)(0,4);(2)①详见解析;②详见解析;(3)不变,为.
22、(1)证明见解析;(2)另一根为4,为.
23、(1)2;2;1(2)甲的方差较小,比较稳定;乙的中位数是1,众数是1,获奖可能性较大.(3).
24、(1)①;②(1,4);③;(2)当时,S最大值=;(3)(2,3)
25、(1)88π;(2)BC长为;S的最小值为.
26、已知:①③(或①④或②④或③④),证明见解析.
…
-2
-1
0
1
2
3
…
…
-5
0
3
4
3
0
…
测试日期
11月5日
11月20日
12月5日
12月20日
1月3日
甲
96
97
100
103
104
乙
100
95
100
105
100
平均数
众数
中位数
方差
甲
8
8
0.4
乙
1
3.2
相关试卷
这是一份2023-2024学年黑龙江省杜尔伯特县数学九年级第一学期期末联考模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,已知α为锐角,且sin等内容,欢迎下载使用。
这是一份黑龙江省大庆市杜尔伯特县2023-2024学年数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省大庆肇源县联考九上数学期末监测模拟试题含答案,共8页。