2023-2024学年黑龙江省齐齐哈尔市拜泉县九上数学期末学业质量监测试题含答案
展开
这是一份2023-2024学年黑龙江省齐齐哈尔市拜泉县九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知反比例函数y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为( )
A.2B.3C.4D.6
2.抛物线的部分图象如图所示,当时,x的取值范围是( )
A.x>2 或x<-3B.-3<x<2
C.x>2或x<-4D.-4<x<2
3.表中所列 的7对值是二次函数 图象上的点所对应的坐标,其中
根据表中提供的信息,有以下4 个判断:
① ;② ;③ 当时,y 的值是 k;④ 其中判断正确的是 ( )
A.①②③B.①②④C.①③④D.②③④
4.下列函数是关于的反比例函数的是( )
A.B.C.D.
5.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为( )
A.﹣2B.﹣1C.1D.2
6.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为( )
A.B.C.D.
7.如图,矩形草坪ABCD中,AD=10 m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1 m,则这条便道的面积大约是( )(精确到0.1 m2)
A.9.5 m2B.10.0 m2C.10.5 m2D.11.0 m2
8.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27°B.34°C.36°D.54°
9.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )
A.B.C.D.
10.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是( )
A.a=bB.a=﹣bC.a<bD.a>b
二、填空题(每小题3分,共24分)
11.已知抛物线与 轴交于两点,若点 的坐标为,抛物线的对称轴为直线 ,则点的坐标为__________.
12.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.
13.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为-3;
(2)当-<x<2时,y<0;
(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论是_________ (填上正确的序号)
14.如图,函数y=的图象所在坐标系的原点是_______.
15.抛物线y=3(x+2)2+5的顶点坐标是_____.
16.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;
17.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.
18.已知反比例函数的图象经过点P(a+1,4),则a =_________________.
三、解答题(共66分)
19.(10分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.
(1)若花圃总面积为448平方米,求小路宽为多少米?
(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?
20.(6分)春节期间,支付宝“集五福”活动中的“集五福”福卡共分为5种,分别为富强福、和谐福、友善福、爱国福、敬业福,从国家、社会和个人三个层面体现了社会主义核心价值观的价值目标.
(1)小明一家人春节期间参与了支付宝“集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给他们其中一个人,两个人各设计了一个游戏,获胜者得到“敬业福”.
在一个不透明盒子里放入标号分别为1,2,3,4的四个小球,这些小球除了标号数字外都相同,将小球摇匀.
小明的游戏规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜.请判断,此游戏规则对小明和姐姐公平吗?说明理由.
姐姐的游戏规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.请用列表法或画树状图的方法进行判断此游戏规则对小明和姐姐是否公平.
(2)“五福”中体现了社会主义核心价值观的价值目标的个人层面有哪些?
21.(6分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.
(1)求k和m的值;
(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.
22.(8分)如图,的三个顶点坐标分别是,,.
(1)将先向左平移4个单位长度,再向上平移2个单位长度,得到,画出;
(2)与关于原点成中心对称,画出.
23.(8分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且.
(1)求证:是的切线;
(2)连接、,求的度数:
(3)如果,,,求的半径.
24.(8分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
25.(10分)如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
26.(10分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.
(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;
(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.
(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、B
4、B
5、A
6、B
7、C
8、C
9、A
10、D
二、填空题(每小题3分,共24分)
11、
12、或
13、(2)(3)
14、M
15、(﹣2,5)
16、
17、150个
18、-3
三、解答题(共66分)
19、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.
20、(1)游戏1对小明和姐姐是公平的;游戏2对小明和姐姐是公平的;(2)友善福、爱国福、敬业福.
21、 (1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-.
22、答案见解析.
23、(1)证明见解析; (2)30°;(3).
24、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
25、(1)证明见解析;(1)CD=1.
26、(1)(3,4);(2)或;(3)m的取值范围是或.
x
…
…
y
…
7
m
14
k
14
m
7
…
x
-2
-1
0
1
2
3
4
5
y
5
0
-3
-4
-3
0
5
12
相关试卷
这是一份黑龙江省哈尔滨尚志市2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,在中,,,,则长为等内容,欢迎下载使用。
这是一份2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了的倒数是,点P,关于的一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份黑龙江省绥化市2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。