云南省昆明市呈贡区2023-2024学年九年级数学第一学期期末达标测试试题含答案
展开
这是一份云南省昆明市呈贡区2023-2024学年九年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,校园内有一个由两个全等的六边形,对于抛物线,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数的图像上,若菱形的边长为4,则k值为( )
A.B.C.D.
2.下列说法正确的是( )
A.打开电视机,正在播放广告是必然事件
B.天气预报明天下雨的概率为%,说明明天一定会下雨
C.买一张体育彩票会中奖是可能事件
D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件
3.方程 x2=4的解是( )
A.x1=x2=2B.x1=x2=-2C.x1=2,x2=-2D.x1=4,x2=-4
4.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )
A.B.C.D.
5.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=( )
A.30°B.40°C.50°D.60°
6.校园内有一个由两个全等的六边形(边长为)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为( )
A.B.C.D.
7.如图的几何体由6个相同的小正方体搭成,它的主视图是( )
A.B.C.D.
8.如图,为的直径,,为上的两点,且为的中点,若,则的度数为( )
A.B.C.D.
9.对于抛物线,下列说法正确的是( )
A.开口向下,顶点坐标B.开口向上,顶点坐标
C.开口向下,顶点坐标D.开口向上,顶点坐标
10.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=( )
A.0B.3C.16D.9
二、填空题(每小题3分,共24分)
11.已知点 A(a,1)与点 B(﹣3,b)关于原点对称,则 ab 的值为_____.
12.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
13.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.
14.从一副扑克牌中取出两张红桃和两张黑桃,将这四张扑克牌洗匀后背面朝上,从中随机摸出两张牌,那么摸到两张都是红牌的概率是__________.
15.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.
16.如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=2∶3∶4,若EG=4,则AC=________.
17.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.
18.已知∽,若周长比为4:9,则_____________.
三、解答题(共66分)
19.(10分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度.
20.(6分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP= 时,△APB∽△ABC;
(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)
21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
22.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.
23.(8分)码头工人每天往一艘轮船上装载货物,装载速度(吨/天)与装完货物所需时间(天)之间的函数关系如图.
(1)求与之间的函数表达式,并写出自变量的取值范围;
(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?
24.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:,,,)
25.(10分)某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:
注:月销售利润=月销售量×(售价-进价)
(1)①求y关于x的函数表达式;
②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为 .
26.(10分)某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.
(1)求y与x之间的函数关系;
(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、C
4、C
5、C
6、C
7、A
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、-2
12、2
13、
14、
15、1.
16、12
17、0或2
18、4:1
三、解答题(共66分)
19、旗杆AB的高度为
20、(1);(2)见解析.
21、所围矩形猪舍的长为1m、宽为8m
22、见解析
23、(1);(2)80吨
24、51
25、(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)1.
26、(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为1元
售价x(元/件)
40
45
月销售量y(件)
300
250
月销售利润w(元)
3000
3750
相关试卷
这是一份07,云南省昆明市呈贡区2023-2024学年八年级上学期期末数学试题,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省昆明市呈贡区2023-2024学年八年级上学期期末数学试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省昆明市呈贡区2023-2024学年八年级上学期期末数学试卷,共7页。