云南省重点中学2023-2024学年数学九上期末复习检测模拟试题含答案
展开
这是一份云南省重点中学2023-2024学年数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了下列命题中,属于真命题的是,若关于x的一元二次方程等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.一元二次方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个实数根D.无实数根
2.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为( )
A.B.C.D.
3.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
A.AB.BC.CD.D
4.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
5.下列命题中,属于真命题的是( )
A.对角线互相垂直的四边形是平行四边形B.对角线互相垂直平行的四边形是菱形
C.对角线互相垂直且相等的四边形是矩形D.对角线互相平分且相等的四边形是正方形
6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k>B.k≥C.k>且k≠1D.k≥且k≠1
7.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是
A.k≥–1B.k>–1
C.k≥–1且k≠0D.k>–1且k≠0
8.在△ABC中,点D、E分别在AB,AC上,DE∥BC,AD:DB=1:2,,则=( ),
A.B.C.D.
9.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为( )
A.2:3B.2:5C.4:9D.4:13
10.已知为常数,点在第二象限,则关于的方程根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.无法判断
二、填空题(每小题3分,共24分)
11.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是_________________.
12.若,则______.
13.若一元二次方程有一根为,则_________.
14.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.
15.如图,为的直径,则_______________________.
16.如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.
17.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.
18.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_____
三、解答题(共66分)
19.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.
20.(6分)已知,在中,,,点为的中点.
(1)若点、分别是、的中点,则线段与的数量关系是 ;线段与的位置关系是 ;
(2)如图①,若点、分别是、上的点,且,上述结论是否依然成立,若成立,请证明;若不成立,请说明理由;
(3)如图②,若点、分别为、延长线上的点,且,直接写出的面积.
21.(6分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).
(1)求该二次函数的解析式;
(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.
22.(8分)已知,二次函数(m,n为常数且m≠0)
(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;
(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;
(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.
23.(8分)如图,在中,,,,点从点出发沿以的速度向点移动,移动过程中始终保持,(点分别在线段、线段上).
(1)点移动几秒后,的面积等于面积的四分之一;
(2)当四边形面积时,求点移动了多少秒?
24.(8分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.
(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
25.(10分)如图,中,,以为直径作,交于点,交于点.
(1)求证:.
(2)若,求的度数.
26.(10分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.
(1)求3枚硬币同时正面朝上的概率.
(2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、B
5、B
6、C
7、C
8、A
9、B
10、B
二、填空题(每小题3分,共24分)
11、1
12、-1
13、1
14、.
15、60°
16、 (2,0)
17、2﹣2
18、70°或120°
三、解答题(共66分)
19、(1)证明见试题解析;(2)1.
20、(1),;(2)成立,证明见解析;(3)1.
21、(1);(2)C在,D不在,见解析
22、 (1) 函数图像与轴有两个交点; (2) 或; (3) 且m≠0
23、(1)2秒;(2)3秒.
24、(1)① 2,②证明见解析;(2)①见解析,②▱ABCD是10阶准菱形.
25、(1)证明见解析;(2)80°
26、(1);(2)公平,见解析
相关试卷
这是一份铜陵市重点中学2023-2024学年九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份镇江市重点中学2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列式子中最简二次根式是等内容,欢迎下载使用。
这是一份云南省蒙自市2023-2024学年数学九上期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,反比例函数,下列说法不正确的是等内容,欢迎下载使用。