北京市首都师范大附属中学2023-2024学年数学九上期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为( )
A.60°B.90°C.120°D.150°
2.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )
A.16块,16块B.8块,24块
C.20块,12块D.12块,20块
3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 °B.75°C.85°D.90°
4.关于的一元二次方程有实数根,则满足( )
A.B.且C.且D.
5.一次函数y=﹣3x﹣2的图象和性质,表述正确的是( )
A.y随x的增大而增大B.在y轴上的截距为2
C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限
6.如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
7.如图,⊙O 中弦AB =8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是( )
A.4B.5C.6D.1°
8.如果两个相似三角形的面积比是1:4,那么它们的周长比是
A.1:16B.1:6C.1:4D.1:2
9.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:
①;②;③.其中正确的是( )
A.①②③B.①C.①②D.②③
10.如果1是方程的一个根,则方程的另一个根是( )
A.B.2C.D.1
二、填空题(每小题3分,共24分)
11.已知,若是一元二次方程的两个实数根,则的值是___________.
12.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.
13.方程x2=2020x的解是_____.
14.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.
15.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.
16.如图,平行四边形中,,,,点E在AD上,且AE=4,点是AB上一点,连接EF,将线段EF 绕点E逆时针旋转120°得到EG,连接DG,则线段DG的最小值为____________________.
17.若分别是方程的两实根,则的值是__________.
18.已知正六边形的外接圆半径为2,则它的内切圆半径为______.
三、解答题(共66分)
19.(10分)如图,已知双曲线与直线交于点和点
(1)求双曲线的解析式;
(2)直接写出不等式的解集
20.(6分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C,
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.
21.(6分)如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.
(1)求该抛物线的解析式;
(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;
(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.
22.(8分)某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.
(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?
(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.
23.(8分)平面直角坐标系中有两点、,我们定义、两点间的“值”直角距离为,且满足,其中.小静和佳佳在解决问题:(求点与点的“1值”直角距离)时,采用了两种不同的方法:
(方法一):;
(方法二):如图1,过点作轴于点,过点作直线与轴交于点,则
请你参照以上两种方法,解决下列问题:
(1)已知点,点,则、两点间的“2值”直角距离.
(2)函数的图像如图2所示,点为其图像上一动点,满足两点间的“值”直角距离,且符合条件的点有且仅有一个,求出符合条件的“值”和点坐标.
(3)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走,因此,两地之间修建垂直和平行的街道常常转化为两点间的“值”直角距离,地位于地的正东方向上,地在点东北方向上且相距,以为圆心修建了一个半径为的圆形湿地公园,现在要在公园和地之间修建观光步道.步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元,问:修建这一规光步道至少要多少万元?
24.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
25.(10分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)
26.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根.
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、C
4、C
5、D
6、A
7、B
8、D
9、A
10、A
二、填空题(每小题3分,共24分)
11、6
12、 (﹣1,1) (1,3)
13、x1=0,x2=1.
14、或
15、
16、
17、3
18、
三、解答题(共66分)
19、(1);(2)或
20、(1)证明见解析;(1)BC=1.
21、(1)y=x2﹣x﹣3;(2)P(3,﹣);(3)点P(2,﹣3),最大值为12
22、(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元
23、(1)10 (2), (3)
24、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
25、此时火箭所在点处与发射站点处的距离约为.
26、(1)1;(2)作图见解析;(3)①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4) 3,3,2,﹣1<a<1.
x
…
﹣3
﹣
﹣2
﹣1
0
1
2
3
…
y
…
3
m
﹣1
0
﹣1
0
3
…
北京首都师范大第二附属中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份北京首都师范大第二附属中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了若x=2y,则的值为,已知2x=3y,是关于的一元一次方程的解,则等内容,欢迎下载使用。
2023-2024学年北京市师范大附属中学数学九上期末考试模拟试题含答案: 这是一份2023-2024学年北京市师范大附属中学数学九上期末考试模拟试题含答案,共8页。试卷主要包含了反比例函数y=﹣的图象在等内容,欢迎下载使用。
北京市首都师范大附属中学2023-2024学年数学八上期末质量跟踪监视模拟试题含答案: 这是一份北京市首都师范大附属中学2023-2024学年数学八上期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了4的算术平方根是,在平面直角坐标系中,点等内容,欢迎下载使用。