四川省师大一中学2023-2024学年九上数学期末达标检测试题含答案
展开
这是一份四川省师大一中学2023-2024学年九上数学期末达标检测试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,空地上,下列函数的图象,不经过原点的是,下列标志中是中心对称图形的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知反比例函数的图象经过点,则这个函数的图象位于( )
A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限
2.一5的绝对值是( )
A.5B.C.D.-5
3.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为( )
A.(,1)B.(1,)C.(1,2)D.(2,1)
4.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )
A.B.C.D.
5.如图,空地上(空地足够大)有一段长为10m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m1.若设AD=xm,则可列方程( )
A.(60﹣)x=900B.(60﹣x)x=900C.(50﹣x)x=900D.(40﹣x)x=900
6.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )
A.B.C.D.
7.函数y=ax2与y=﹣ax+b的图象可能是( )
A.B.
C.D.
8.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是( )
A.2B.4C.6D.8
9.下列函数的图象,不经过原点的是( )
A.B.y=2x2C.y=(x﹣1)2﹣1D.
10.下列标志中是中心对称图形的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则的面积为_____________.
13.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.
14.如图,是半圆的直径,四边形内接于圆,连接,,则_________度.
15.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
16.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.
17.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.
18.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.
三、解答题(共66分)
19.(10分)问题提出:
如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值
(1)尝试解决:
为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连结CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠
△ ∽△
∴
∴PD=BP
∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
(2)自主探索:
如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为 .(请在图3中添加相应的辅助线)
(3)拓展延伸:
如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
20.(6分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△PAB的面积最大?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.
21.(6分)如图,某小区规划在一个长,宽的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的面积都为.应如何设计道路的宽度?
22.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.
(1)求证:AC平分∠BAD;
(2)若⊙O的半径为,AC=6,求DF的长.
23.(8分)从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.
24.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).
25.(10分)如图,A,B,C三点的坐标分别为A(1,0),B(4,3),C(5,0),试在原图上画出以点A为位似中心,把△ABC各边长缩小为原来的一半的图形,并写出各顶点的坐标.
26.(10分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.
(1)求出的值;
(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;
(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、B
4、C
5、B
6、B
7、B
8、D
9、D
10、B
二、填空题(每小题3分,共24分)
11、1
12、1
13、(47,)
14、1
15、15.6
16、y=﹣(x+1)2﹣2
17、
18、 (–3,–1)
三、解答题(共66分)
19、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.
20、(1)y=﹣x2﹣2x+3 (2)(﹣,) (3)存在,P(﹣2,3)或P(,)
21、道路的宽度应设计为1m.
22、(1)证明见解析;(2).
23、表见解析,
24、6+
25、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).
26、(1);(2),最小值为;(3)或或或或.
相关试卷
这是一份广东省实验中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,下列运算正确的是等内容,欢迎下载使用。
这是一份四川省资中学县2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了一元二次方程配方后化为,如图,已知点E,如图,四边形的顶点坐标分别为,一元二次方程的根为,阅读理解等内容,欢迎下载使用。
这是一份四川省成都七中学育才学校2023-2024学年九上数学期末达标检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,对于二次函数y=2,将抛物线y=等内容,欢迎下载使用。