孝感市2023-2024学年九上数学期末考试模拟试题含答案
展开
这是一份孝感市2023-2024学年九上数学期末考试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线 BD上,点A落在点A' 处,折痕为DG,求AG的长为( )
A.1.5B.2C.2.5D.3
2.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有( )
① ② ③ ④∽
A.1个B.2个C.3个D.4个
3.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是( )
A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤12
4.的值为( )
A.2B.C.D.
5.已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为( )
A.B.C.D.
6.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
7.在反比例函数的图象在某象限内,随着的增大而增大,则的取值范围是( )
A.B.C.D.
8.如图,在中,,,,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:①;②当点与点重合时,;③;④.其中正确的结论有( )
A.1个B.2个C.3个D.4个
9.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则( )
A.B.C.D.
10.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为( )
A.8B.10C.12D.24
二、填空题(每小题3分,共24分)
11.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.
12.若,则的值为__________.
13.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.
14.如图所示,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,双曲线y=kx﹣1(k≠0,x>0)与边AB、BC分别交于点N、F,连接ON、OF、NF.若∠NOF=45°,NF=2,则点C的坐标为_____.
15.抛物线y=x2–6x+5的顶点坐标为__________.
16.如图,在四边形ABCD中,AD∥BC∥EF,EF分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是_____.
17.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:
将创新能力,综合知识和语言表达三项测试成绩按的比例计入总成绩,则该应聘者的总成绩是__________分.
18.从一副扑克牌中取出两张红桃和两张黑桃,将这四张扑克牌洗匀后背面朝上,从中随机摸出两张牌,那么摸到两张都是红牌的概率是__________.
三、解答题(共66分)
19.(10分)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
20.(6分)在如图所示的平面直角坐标系中,已知△ABC.
(1)将△ABC向左平移4个单位得到△A1B1C1,画出△A1B1C1的图形,并写出点A1的坐标.
(2)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,画出△A2B2C2图形,并写出点A2的坐标.
21.(6分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
22.(8分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.
(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?
(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).
23.(8分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.
(1)求证:EF=ED;
(2)若AB=2,CD=1,求FE的长.
24.(8分)某服装店用1440元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用3240元,再次以比第一次进价多4元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.
(1)该服装店第一次购买了此种服装多少件?
(2)两次出售服装共盈利多少元?
25.(10分)如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M
(1)如图1,当α=90°时,∠AMD的度数为 °
(2)如图2,当α=60°时,∠AMD的度数为 °
(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.
26.(10分)如图,小明在地面A处利用测角仪观测气球C的仰角为37°,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45°.求气球的高度是多少?参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、D
4、D
5、A
6、C
7、C
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、1
12、
13、1
14、 (0,+1)
15、(3,-4)
16、
17、
18、
三、解答题(共66分)
19、(1)100、35;(2)见解析;(3)
20、 (1)图见解析,A1(-1,3);(2)图见解析,A2(3,-3).
21、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
22、(1);(2)0.6
23、(1)见解析;(2)EF=.
24、(1)45;(2)1.
25、(1)1;(2)2;(3)∠AMD=180°﹣α,证明详见解析.
26、120m
测试项目
创新能力
综合知识
语言表达
测试成绩/分
相关试卷
这是一份湖北省孝感市八校联考2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了下列方程中,为一元二次方程的是等内容,欢迎下载使用。
这是一份安徽宣城古泉中学2023-2024学年九上数学期末考试模拟试题含答案,共7页。试卷主要包含了下列函数是关于的反比例函数的是等内容,欢迎下载使用。
这是一份2023-2024学年湖北省孝感市孝昌县九上数学期末检测模拟试题含答案,共7页。试卷主要包含了如图,切于两点,切于点,交于等内容,欢迎下载使用。