天津市蓟县名校2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知点A(,m),B ( l,m),C (2,1)在同一条抛物线上,则下列各点中一定在这条抛物线上的是( )
A.B.C.D.
2.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( )
A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0
3.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是( ).
A.3B.4C.6D.8
4.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )
A.32个B.36个C.40个D.42个
5.下列图形中,不是轴对称图形的是( )
A.B.C.D.
6.如图,一根电线杆垂直于地面,并用两根拉线,固定,量得,,则拉线,的长度之比( )
A.B.C.D.
7.如图,的半径为2,弦,点P为优弧AB上一动点,,交直线PB于点C,则的最大面积是
A.B.1C.2D.
8.如图,是⊙上的点,则图中与相等的角是( )
A.B.C.D.
9.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点( )
A.(1,0)B.(1,8)C.(1,﹣1)D.(1,﹣6)
10.方程的两根分别是,则等于 ( )
A.1B.-1C.3D.-3
二、填空题(每小题3分,共24分)
11.在平面直角坐标系中,已知点,以原点为位似中心,相似比为.把缩小,则点的对应点的坐标分别是_____,_____.
12.若关于的一元二次方程有实数根,则的取值范围是_______.
13.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是 .
14.如图,的直径垂直弦于点,且,,则弦__________.
15.如图,点、、、在射线上,点、、、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为___________.
16.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则 ▲ .(用>、<、=填空).
17.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.
18.如图,在平面直角坐标系中,点的坐标分别为,以原点为位似中心,把线段放大,点的对应点的坐标为,则点的对应点的坐标为__________.
三、解答题(共66分)
19.(10分)解方程:
(1);
(2).
20.(6分)已知:如图,在边长为的正方形中,点、分别是边、上的点,且,连接、,两线相交于点,过点作,且,连接.
(1)若,求的长.
(2)若点、分别是、延长线上的点,其它条件不变,试判断与的关系,并予以证明.
21.(6分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.
(1)求该抛物线的解析式及顶点的坐标.
(2)连接,直接写出线段与线段的数量关系和位置关系.
(3)连接,当为何值时?
(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
22.(8分)如图,在▱ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
23.(8分)如图,已知点,是一次函数图象与反比例函数图象的交点,且一次函数与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)连接,求的面积;
(3)在轴上有一点,使得,求出点的坐标.
24.(8分)甲、乙两人用如图所示的两个转盘(每个转盘分别被分成面积相等的3个扇形)做游戏,游戏规则:甲转动A盘一次,乙转动B盘一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;并求出甲获胜的概率.
25.(10分)某商城销售一种进价为10元1件的饰品,经调查发现,该饰品的销售量(件)与销售单价(元)满足函数,设销售这种饰品每天的利润为(元).
(1)求与之间的函数表达式;
(2)当销售单价定为多少元时,该商城获利最大?最大利润为多少?
(3)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为多少?
26.(10分)在中,,.
(Ⅰ)如图Ⅰ,为边上一点(不与点重合),将线段绕点逆时针旋转得到,连接.
求证:(1);
(2).
(Ⅱ)如图Ⅱ,为外一点,且,仍将线段绕点逆时针旋转得到,连接,.
(1)的结论是否仍然成立?并请你说明理由;
(2)若,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、A
5、A
6、D
7、B
8、D
9、A
10、B
二、填空题(每小题3分,共24分)
11、 (-1,2)或(1,-2); (-3,-1)或(3,1)
12、
13、
14、
15、
16、>.
17、1.
18、
三、解答题(共66分)
19、(1),;(2),.
20、(1)FG=3;(2),,理由见解析
21、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)
22、(1)证明见解析;(2).
23、(1);;(2)42;(3)或.
24、见解析,.
25、(1);(2)销售单价为30时,该商城获利最大,最大利润为800元;(3)单价定为25元
26、(Ⅰ)(1)见解析;(2)见解析;(Ⅱ)(1)仍然成立,见解析;(2)6.
2023-2024学年吉林省松原市名校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年吉林省松原市名校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知α为锐角,且sin等内容,欢迎下载使用。
2023-2024学年上海市闸北区名校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年上海市闸北区名校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了若∽,,,,则的长为,已知关于的方程个等内容,欢迎下载使用。
江苏省泰州市名校2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份江苏省泰州市名校2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。