安徽省宿州埇桥区七校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案
展开
这是一份安徽省宿州埇桥区七校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中是随机事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,二次函数与坐标轴交点个数( )
A.3个B.2个C.1个D.0个
2.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则csA的值为( )
A.B.C.D.
3.如图所示的中心对称图形中,对称中心是( )
A.B.C.D.
4.计算( )
A.B.C.D.
5.下列事件中是随机事件的是( )
A.校运会上立定跳远成绩为10米
B.在只装有5个红球的袋中,摸出一个红球
C.慈溪市明年五一节是晴天
D.在标准大气压下,气温3°C 时,冰熔化为水
6.下列图形中,可以看作是中心对称图形的为( )
A.B.C.D.
7.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是( )
A.5B.4C.3D.2
8.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是( )
A.B.C.或D.或
9.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是( )
A.B.C.D.
10.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是( )
A.9mB.12mC.8mD.10m
二、填空题(每小题3分,共24分)
11.进价为元/件的商品,当售价为元/件时,每天可销售件,售价每涨元,每天少销售件,当售价为________元时每天销售该商品获得利润最大,最大利润是________元.
12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.
13.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.
14.如图,,与相交于点,若,,则的值是_______.
15.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.
16.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.
17.方程的解是 .
18.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.
三、解答题(共66分)
19.(10分)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中为下水管道口直径,为可绕转轴自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径,为检修时阀门开启的位置,且.
(1)直接写出阀门被下水道的水冲开与被河水关闭过程中的取值范围;
(2)为了观测水位,当下水道的水冲开阀门到达位置时,在点处测得俯角,若此时点恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)
20.(6分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
21.(6分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).
22.(8分)如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=1.
(1)求BF的长;
(2)求⊙O的半径r.
23.(8分)根据龙湾风景区的旅游信息,某公司组织一批员工到该风景区旅游,支付给旅行社28000元.你能确定参加这次旅游的人数吗?
24.(8分)如图,已知点是外一点,直线与相切于点,直线分别交于点、,,交于点.
(1)求证:;
(2)当的半径为,时,求的长.
25.(10分)如图,直线与双曲线在第一象限内交于、两点,已知,.
(1)__________,____________________,____________________.
(2)直接写出不等式的解集;
(3)设点是线段上的一个动点,过点作轴于点,是轴上一点,求的面积的最大值.
26.(10分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?
(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、B
5、C
6、B
7、B
8、D
9、B
10、A
二、填空题(每小题3分,共24分)
11、55,3.
12、
13、60π
14、
15、3
16、
17、
18、x1=1,x2=﹣1.
三、解答题(共66分)
19、(1);(2)
20、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)当P点坐标为(2,﹣6)时,△PBC的最大面积为1.
21、隧道AB的长约为635m.
22、(1)BF=3;(2)r=2.
23、参加旅游的人数40人.
24、(1)证明见解析;(2)1.
25、(1),,.(2)或.(3)当时,有最大值,最大值为
26、(1);(2),见解析
相关试卷
这是一份安徽省宿州市埇桥区2023-2024学年九年级数学第一学期期末经典试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果是,如图,在等腰中,于点,则的值等内容,欢迎下载使用。
这是一份安徽省宿州埇桥区教育集团四校联考2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份安徽省宿州市埇桥区教育集团2023-2024学年九年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了已知抛物线y=x2+等内容,欢迎下载使用。