山东省济宁金乡县联考2023-2024学年九上数学期末综合测试试题含答案
展开
这是一份山东省济宁金乡县联考2023-2024学年九上数学期末综合测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,使分式有意义的x的取值范是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为( )
A.B.C.D.
2.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )
A.a+b<0B.a+b>0C.a﹣b<0D.ab>0
3.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为( )
A.y=﹣1B.y=﹣3C.y=﹣2D.y=﹣2
4.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正确的有( )
A.①②B.①④⑤C.①②④⑤D.①②③④⑤
5.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为
A.46°B.53°C.56°D.71°
6.使分式有意义的x的取值范是( )
A.x≠3B.x=3C.x≠0D.x=0
7.已知k1<0<k2,则函数y=k1x和的图象大致是( )
A.B.C.D.
8.方程x2+x-12=0的两个根为( )
A.x1=-2,x2=6B.x1=-6,x2=2C.x1=-3,x2=4D.x1=-4,x2=3
9.如图,是的内切圆,切点分别是、,连接,若,则的度数是( )
A.B.C.D.
10.已知反比例函数的图象经过点,小良说了四句话,其中正确的是( )
A.当时,B.函数的图象只在第一象限
C.随的增大而增大D.点不在此函数的图象上
二、填空题(每小题3分,共24分)
11.如果反比例函数的图象经过点,则该反比例函数的解析式为____________
12.在平面直角坐标系中,点P(3,﹣5)关于原点对称的点的坐标是_____.
13.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长
14.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是_____.
15.若a、b、c、d满足,则=_____.
16.已知:如图,在平行四边形中,对角线、相较于点,在不添加任何辅助线的情况下,请你添加一个条件________________(只添加一个即可),使平行四边形成为矩形.
17.如图,中,,且,,则___________
18.若两个相似三角形对应角平分线的比是,它们的周长之和为,则较小的三角形的周长为_________.
三、解答题(共66分)
19.(10分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=1.
(1)求一次函数与反比例函数的解析式;
(2)观察图象直接写出不等式0<ax+b≤的解集;
(1)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由
20.(6分)某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
其中,________________.
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;
(3)观察函数图像,写出两条函数的性质;
(4)进一步探究函数图像发现:
①方程有______个实数根;
②函数图像与直线有_______个交点,所以对应方程有_____个实数根;
③关于的方程有个实数根,的取值范围是___________.
21.(6分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:
(1)这次被调查的总人数是 人,“:了解但不使用”的人数是 人,“:不了解”所占扇形统计图的圆心角度数为 .
(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?
(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.
22.(8分)如图,是的角平分线,过点分别作、的平行线,交于点,交于点.
(1)求证:四边形是菱形.
(2)若,.求四边形的面积.
23.(8分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
24.(8分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.
(1)求k的取值范围.
(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.
25.(10分)岚山区地处黄海之滨,渔业资源丰富,海产品深受消费者喜爱.某海产品批发超市对进货价为40元/千克的某品牌小黄鱼的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式;
(2)若不考虑其它因素,则销售总利润=每千克的利润×总销量,那么当销售价格定为多少时,该品牌小黄鱼每天的销售利润最大?最大利润是多少?
26.(10分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.
(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;
(2)随机选取2名同学,求其中有乙同学的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、A
4、C
5、C
6、A
7、D
8、D
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、(﹣3,5)
13、AD=1
14、16:25
15、
16、或(等,答案不唯一)
17、1
18、6cm
三、解答题(共66分)
19、(1);(2)-1≤x<0;(1)存在满足条件的点P,其坐标为(0,-1)或(0,9)或(0,12)
20、(1)-1;(2)见解析;(1)函数的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①2;②1,1;③-4<a<-1
21、(1),,;(2)4500人;(3)
22、(1)详见解析;(2)120.
23、25°
24、(1);(2)k=1
25、(1)y=-2x+140;(2)当该种小黄鱼销售价定为55元/千克时,每天的销售利润有最大值1元
26、(1)(2)
相关试卷
这是一份山东省济宁市汶上县2023-2024学年九上数学期末综合测试试题含答案,共8页。
这是一份山东省济宁微山县联考2023-2024学年九上数学期末联考模拟试题含答案,共7页。试卷主要包含了已知,则下列各式不成立的是等内容,欢迎下载使用。
这是一份山东省济宁邹城县联考2023-2024学年九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法中不正确的是等内容,欢迎下载使用。