山东省日照莒县联考2023-2024学年九年级数学第一学期期末监测试题含答案
展开
这是一份山东省日照莒县联考2023-2024学年九年级数学第一学期期末监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列命题是真命题的个数是( ).
①64的平方根是;
②,则;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A.1个B.2个C.3个D.4个
2.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是( )
A.B.
C.D.
3.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为( )
A.B.C.D.
4.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是( )
A.B.C.D.
5.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为( )
A.2B.4C.6D.8
6.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去 参观,两人恰好选择同一古迹 景点的概率是( )
A.B.C.D.
7.将二次函数的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )
A.B.
C.D.
8.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是( )
A.2B.3C.4D.5
9.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是( )
A.﹣1B.﹣2C.1D.0
10.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.二次函数的图象如图所示,若,.则、的大小关系为_____.(填“”、“”或“”)
12.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.
13.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.
14.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.
15.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则列出的方程是_______________.
16.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤元上涨到第三季度的每公斤元,则该超市的排骨价格平均每个季度的增长率为________.
17.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
18.在Rt△ABC中,∠C=90°,如果csB=,BC=4,那么AB的长为________.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.
(1)求线段BC的长;
(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;
(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.
20.(6分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.
(1)求剩余木料的面积.
(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出 块这样的木条.
21.(6分)综合与实践
在数学活动课上,老师出示了这样一个问题:如图1,在中,,,,点为边上的任意一点.将沿过点的直线折叠,使点落在斜边上的点处.问是否存在是直角三角形?若不存在,请说明理由;若存在,求出此时的长度.
探究展示:勤奋小组很快找到了点、的位置.
如图2,作的角平分线交于点,此时沿所在的直线折叠,点恰好在上,且,所以是直角三角形.
问题解决:
(1)按勤奋小组的这种折叠方式,的长度为 .
(2)创新小组看完勤奋小组的折叠方法后,发现还有另一种折叠方法,请在图3中画出来.
(3)在(2)的条件下,求出的长.
22.(8分)如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.
(1)求抛物线的解析式;
(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;
(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.
23.(8分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.
(1)求证:是的切线;
(2)若,,求的边上的高.
(3)在(2)的条件下,求的面积.
24.(8分)如图,抛物线与轴交于点,直线与轴交于点与轴左侧抛物线交于点,直线与轴右侧抛物线交于点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上一动点,求面积的最大值;
(3)点是抛物线上一动点,点是抛物线对称轴上一动点,请直接写出以点为顶点的四边形是平行四边形时点的坐标.
25.(10分)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?
26.(10分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.
①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;
②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:
(1)完成题中的填空;
(2)已知二次函数的解析式为;
①求其图象的焦点的坐标;
②求过点且与轴平行的直线与二次函数图象交点的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、A
4、B
5、D
6、A
7、B
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、
相关试卷
这是一份山东省日照市莒县2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了的值等于,如图,AB是⊙O的弦等内容,欢迎下载使用。
这是一份山东省日照市莒县2023-2024学年九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了已知函数y=ax2-2ax-1等内容,欢迎下载使用。
这是一份2023-2024学年山东省日照莒县联考数学九上期末考试模拟试题含答案,共8页。试卷主要包含了若反比例函数y=等内容,欢迎下载使用。