山东省日照市名校2023-2024学年九上数学期末监测模拟试题含答案
展开
这是一份山东省日照市名校2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果是,已知分式的值为0,则的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是( )
A.B.C.D.
2.下列四个图案中,不是轴对称图案的是( )
A.B.
C.D.
3.如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A.30°B.40°C.45°D.50°
4.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是
A.10(1+2x)=18.8B.=10
C.=18.8D.=18.8
5.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是△P1A1O、△P2A2O、△P3A30,设它们的面积分别是S1、S2、S3,则( )
A.S1<S2<S3
B.S2<S1<S3
C.S3<S1<S2
D.S1=S2 =S3
6.计算的结果是
A.﹣3B.3C.﹣9D.9
7.下列调查中,最适合采用普查方式的是( )
A.对学校某班学生数学作业量的调查
B.对国庆期间来山西的游客满意度的调查
C.对全国中学生手机使用时间情况的调查
D.环保部广对汾河水质情况的调查
8.下列方程中是关于x的一元二次方程的是( )
A.x2+=0B.y2﹣3x+2=0
C.x2=5xD.x2﹣4=(x+1)2
9.设a,b是方程x2+2x﹣20=0的两个实数根,则a2+3a+b的值为( )
A.﹣18B.21C.﹣20D.18
10.已知分式的值为0,则的值是( ).
A.B.C.D.
二、填空题(每小题3分,共24分)
11.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.
12.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是______.
13.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.
14.如图,点、、在上,若,,则________.
15.已知,则=____
16.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若An=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.
17.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______ ; 若将绕点顺时针旋转,则顶点所经过的路径长为__________.
18.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为 .
三、解答题(共66分)
19.(10分)如图,平行四边形中,点是的中点,用无刻度的直尺按下列要求作图.
(1)在图1中,作边上的中点;
(2)在图2中,作边上的中点.
20.(6分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C (点C与点A、B在同一平面内),A处测得其仰角为,B处测得其仰角为.(参考数据:,,,,)
(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)
(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)
21.(6分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.
(1)求证:PQ∥AC;
(2)求S与t的函数关系式,并直接写出自变量t的取值范围.
22.(8分)某日王老师佩戴运动手环进行快走锻炼两次锻炼后数据如下表,与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的倍.设王老师第二次锻炼时平均步长减少的百分率为.注:步数平均步长距离.
(1)根据题意完成表格;
(2)求.
23.(8分)已知关于的一元二次方程,
(1) 求证:无论m为何值,方程总有两个不相等的实数根;
(2) 当m为何值时,该方程两个根的倒数之和等于1.
24.(8分)如图,抛物线交轴于点和点,交轴于点.
(1)求这个抛物线的函数表达式;
(2)若点的坐标为,点为第二象限内抛物线上的一个动点,求四边形面积的最大值.
25.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.
(1)画树状图或列表求出各人获胜的概率。
(2)这个游戏公平吗?说说你的理由
26.(10分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).
(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);
(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、B
4、C
5、D
6、B
7、A
8、C
9、D
10、D
二、填空题(每小题3分,共24分)
11、
12、1﹣1.
13、(1+2,4),(1﹣2,4),(1,﹣4)
14、
15、1
16、 (6,5)
17、3.5;
18、.
三、解答题(共66分)
19、 (1) 如图所示,见解析;(2) 如图所示,见解析.
20、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒
21、(1)见解析;(2)
22、(1)①,②;(2)的值为.
23、(2)见解析 (2)
24、 (1);(2)的最大值为.
25、(1)小力获胜的概率为,小明获胜的概率;(2)不公平,理由见解析
26、(1)鸡场的宽(BC)为6m,则长(AB)为1m;(2)不能.
项目
第一次锻炼
第二次锻炼
步数(步)
①_______
平均步长(米/步)
②_______
距离(米)
相关试卷
这是一份北京市崇文区名校2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,在中,,,,,则的长为,在中,,若已知,则等内容,欢迎下载使用。
这是一份2023-2024学年新疆乌鲁木齐市名校九上数学期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,阅读理解,方程是关于的一元二次方程,则等内容,欢迎下载使用。
这是一份2023-2024学年山东省日照市名校数学九上期末学业质量监测试题含答案,共7页。