山东省莱芜市莱城区茶业口镇腰关中学2023-2024学年九上数学期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在Rt△ABC中,AC=3,AB=5,则csA的值为( )
A.B.C.D.
2.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是( )
A.B.aC.D.
3.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是( )
A.∠B=∠CB.∠ADC=∠AEBC.BE=CD,AB=ACD.AD:AC=AE:AB
4.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为( )
A.5B.6C.D.
5.在同一平面上,外有一定点到圆上的距离最长为10,最短为2,则的半径是( )
A.5B.3C.6D.4
6.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为( )
A.(2,﹣1)B.(8,﹣4)
C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)
7.方程x2﹣3x=0的根是( )
A.x=0B.x=3C.,D.,
8.下列抛物线中,其顶点在反比例函数y=的图象上的是( )
A.y=(x﹣4)2+3B.y=(x﹣4)2﹣3C.y=(x+2)2+1D.y=(x+2)2﹣1
9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2πB.4πC.5πD.6π
10.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得( )
A.(8﹣) (10﹣)=8×10﹣40B.(8﹣)(10﹣)=8×10+40
C.(8+)(10+)=8×10﹣40D.(8+)(10+)=8×10+40
二、填空题(每小题3分,共24分)
11.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.
12.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.
13.如图,在Rt△ABC中,∠C=90°,点D为BC上一点,AD=BD,CD=1,AC=,则∠B的度数为_________________ .
14.如图,在直角三角形中,是斜边上的高,,则的值为___.
15.如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD上的一动点,连接PC,过点P作PE⊥PC交AB于点E.以CE为直径作⊙O,当点P从点A移动到点D时,对应点O也随之运动,则点O运动的路程长度为_____.
16.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.
17.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为________cm.
18.将半径为12,圆心角为的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为____.
三、解答题(共66分)
19.(10分)如图,已知矩形 ABCD.在线段 AD 上作一点 P,使∠DPC =∠BPC .(要求:用尺规作图,保留作图痕迹,不写作法和证明)
20.(6分)如图,在平面直角坐标系中,已知矩形的顶点,过点的双曲线与矩形的边交于点.
(1)求双曲线的解析式以及点的坐标;.
(2)若点是抛物线的顶点;
①当双曲线过点时,求顶点的坐标;
②直接写出当抛物线过点时,该抛物线与矩形公共点的个数以及此时的值.
21.(6分)用适当的方法解下列方程.
(1)3x(x+3)=2(x+3)
(2)2x2﹣4x﹣3=1.
22.(8分)解方程
(1)x2﹣6x﹣7=0
(2)(x﹣1)(x+3)=12
23.(8分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)
(1)试求与之间的函数表达式.
(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?
24.(8分)如图,一次函数与反比例函数的图象相交于A(2,2),B(n,4)两点,连接OA、OB.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)在直角坐标系中,是否存在一点P,使以P、A、O、B为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
25.(10分)如图,每个小正方形的边长为个单位长度,请作出关于原点对称的,并写出点的坐标.
26.(10分)请阅读下面材料:
问题:已知方程x1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.
解:设所求方程的根为y,y=,所以x=1y
把x=1y代入已知方程,得(1y)1+1y-3=0
化简,得4y1+1y-3=0
故所求方程为4y1+1y-3=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题:
(1)已知方程1x1-x-15=0,求一个关于y的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.
(1)已知方程ax1+bx+c=0(a≠0)有两个不相等的实数根,求一个关于y的一元二次方程,使它的根比已知方程根的相反数的一半多1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、B
5、D
6、C
7、D
8、A
9、B
10、D
二、填空题(每小题3分,共24分)
11、11
12、
13、30°.
14、
15、.
16、
17、1
18、1
三、解答题(共66分)
19、详见解析
20、(1),;(2)①;②三个,
21、 (1)x1=−3,x2=(2)
22、(1)x=7或x=﹣1(2)x=﹣5或x=3
23、(1)w=;(2)游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元
24、(1)一次函数的解析式为,反比例函数的解析式为;(2)的面积为;(3)存在,点的坐标为(-3,-6),(1,-2)(3,6).
25、画图见解析;点的坐标为.
26、(1)1y1+y-15=0;(1).
2023-2024学年山东省莱芜市牛泉镇刘仲莹中学九上数学期末学业水平测试试题含答案: 这是一份2023-2024学年山东省莱芜市牛泉镇刘仲莹中学九上数学期末学业水平测试试题含答案,共7页。
山东省莱芜市莱城区腰关中学2023-2024学年九上数学期末质量检测试题含答案: 这是一份山东省莱芜市莱城区腰关中学2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了已知二次函数y=x2﹣6x+m等内容,欢迎下载使用。
山东省莱芜市莱城区茶业口镇腰关中学2023-2024学年八上数学期末学业水平测试模拟试题含答案: 这是一份山东省莱芜市莱城区茶业口镇腰关中学2023-2024学年八上数学期末学业水平测试模拟试题含答案,共6页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。