广东省东莞市长安实验中学2023-2024学年数学九上期末检测试题含答案
展开
这是一份广东省东莞市长安实验中学2023-2024学年数学九上期末检测试题含答案,共8页。试卷主要包含了二次函数y=3等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知△ABC∽△A1B1C1,若△ABC与△A1B1C1的相似比为3:2,则△ABC与△A1B1C1的周长之比是( )
A.2:3B.9:4C.3:2D.4:9
2.一个布袋里装有10个只有颜色不同的球,其中4个黄球,6个白球.从布袋里任意摸出1个球,则摸出的球是黄球的概率为( )
A.B.C.D.
3.一个物体如图所示,它的俯视图是( )
A.B.C.D.
4.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为( )
A.5B.﹣1C.2D.﹣5
5.在平面直角坐标系中,平移二次函数的图象能够与二次函数的图象重合,则平移方式为( )
A.向左平移个单位,向下平移个单位
B.向左平移个单位,向上平移个单位
C.向右平移个单位,向下平移个单位
D.向右平移个单位,向上平移个单位
6.下列图形中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
7.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是( )
A.B.C.D.10
8.如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为( )
A.B.C.D.
9.已知一个几何体如图所示,则该几何体的主视图是( )
A.B.
C.D.
10.二次函数y=3(x+4)2﹣5的图象的顶点坐标为( )
A.(4,5)B.(﹣4,5)C.(4,﹣5)D.(﹣4,﹣5)
二、填空题(每小题3分,共24分)
11.若,那么△ABC的形状是___.
12.已知,则___________.
13.两个函数和(abc≠0)的图象如图所示,请直接写出关于x的不等式的解集_______________.
14.分解因式:a2b﹣b3= .
15.已知关于的方程有两个不相等的实数根,则的取值范围是__________.
16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
17.若方程有两个相等的实数根,则m=________.
18.如图,在平面直角坐标系中,已知经过原点,与轴、轴分别交于、两点,点坐标为,与交于点,则圆中阴影部分的面积为________.
三、解答题(共66分)
19.(10分)如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.
(1)求证:CD=CE;
(2)连结AE,若∠D=25°,求∠BAE的度数.
20.(6分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
①;②;③;④;⑤;⑥;
(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
(3)如果与相似,但面积不相等,求此时正方形的边长.
21.(6分)定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:
(1)理解:如图1,在四边形ABCD中,若__________(填一种情况),则四边形ABCD是“准菱形”;
(2)应用:证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3)拓展:如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.
22.(8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
(1)表中m=__________,n=____________;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
23.(8分)解不等式组:
24.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
25.(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
26.(10分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+csB的值.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、D
4、B
5、D
6、B
7、B
8、C
9、A
10、D
二、填空题(每小题3分,共24分)
11、等边三角形
12、
13、或;
14、b(a+b)(a﹣b)
15、且
16、∠B=∠1或
17、4
18、
三、解答题(共66分)
19、(1)证明见解析;(2)40°.
20、(1)④⑤;(2);(3)或.
21、 (1)答案不唯一,如AB=BC.(2)见解析;(3) BE=2或或或.
22、 (1)8,0.35;(2)见解析;(3)89.5~94.5;(4).
23、
24、(1)12m或16m;(2)195.
25、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.
26、.
分数段
频数
频率
74.5~79.5
2
0.05
79.5~84.5
m
0.2
84.5~89.5
12
0.3
89.5~94.5
14
n
94.5~99.5
4
0.1
月份(x)
1月
2月
3月
4月
5月
6月
销售量(p)
3.9万台
4.0万台
4.1万台
4.2万台
4.3万台
4.4万台
相关试卷
这是一份2023-2024学年广东省东莞市长安实验中学七年级(上)期末数学试卷(含详细答案解析),共15页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市长安实验中学七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省东莞市长安中学数学九年级第一学期期末调研试题含答案,共8页。试卷主要包含了下列图形中是中心对称图形的有个,已知点A等内容,欢迎下载使用。