广东普宁市下架山中学2023-2024学年九上数学期末学业水平测试模拟试题含答案
展开
这是一份广东普宁市下架山中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为( )
A.1B.2C.D.
2.如图,平行于x轴的直线AC分别交函数 y=x(x≥0)与 y= x(x≥0)的图象于 B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交 y=x(x≥0)的图象于点E,则=( )
A.B.1C.D.3﹣
3.圆锥的底面半径是,母线为,则它的侧面积是( )
A.B.C.D.
4.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于( )
A.B.C.D.
5.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为( )
A.8B.6C.4D.3
6.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为( )
A.30°B.60°C.90°D.120°
7.关于的一元二次方程有一个根为,则的值应为( )
A.B.C.或D.
8.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( )
A.B.C.D.
9.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.B.C.D.
10.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为( )
A.cmB.4 cmC.3cmD.2 cm
二、填空题(每小题3分,共24分)
11.若关于的一元二次方程有实数根,则的取值范围是_______.
12.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=______.
13.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.
14.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.
15.对于实数a和b,定义一种新的运算“*”,,计算=______________________.若恰有三个不相等的实数根,记,则k的取值范围是 _______________________.
16.抛物线y=x2+3与y轴的交点坐标为__________.
17.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
18.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.已知两车相遇时快车比慢车多行驶60千米.若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_____千米.
三、解答题(共66分)
19.(10分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.
(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;
(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?
20.(6分)在等边中,点为上一点,连接,直线与分别相交于点,且.
(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;
(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;
(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).
21.(6分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.
(1)求证:EG是⊙O的切线;
(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.
22.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.
(1)请判断的形状,并说明理由;
(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;
(3)当,求PA+PB+PC的最小值.
23.(8分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.
(1)求点A和B的坐标;
(2)连结OA,OB,求△OAB的面积.
24.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
25.(10分)某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每降价1元,每星期可多卖出20件. 已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?
26.(10分)某商场销售一批名牌衬衫,平均每天可售出10件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件,若商场平均每天要盈利600元,每件衬衫应降价多少元?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、A
4、A
5、A
6、C
7、B
8、D
9、D
10、D
二、填空题(每小题3分,共24分)
11、
12、1﹣1
13、1
14、-2
15、
16、(0,3)
17、
18、
三、解答题(共66分)
19、(1);(2)当时,w有最大值,最大值为750元
20、(1) △BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.
21、(1)证明见解析;(2)
22、(1)等边三角形,见解析;(2)见解析;(3)
23、(1)A(1,1) ,B(-3,9);(2)6.
24、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
25、定价为57.5元时,所获利润最大,最大利润为6125元.
26、平均每天要盈利600元,每件衬衫应降价20元
相关试卷
这是一份2023-2024学年广东省普宁市华南实验学校数学九上期末学业水平测试模拟试题含答案,共8页。
这是一份河南省平顶山宝丰县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了小明沿着坡度为1等内容,欢迎下载使用。
这是一份2023-2024学年广东省普宁市燎原中学数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。