广东省茂名市高州2023-2024学年九上数学期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.m是方程的一个根,且,则 的值为( )
A.B.1C.D.
2.中,,是边上的高,若,则等于( )
A.B.或C.D.或
3.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )
A.B.
C.D.
4.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为( )
A.B.C.D.
5.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为( )
A.B.C.D.
6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
7.如图,将绕点按逆时针方向旋转后得到,若,则的度数为( )
A.B.C.D.
8.如图,正方形的边长是4,是的中点,连接、相交于点,则的长是( )
A.B.C.D.5
9.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )
A.B.C.D.
10.如图,△ABC中,∠A=65°,AB=6,AC=3,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不构成相似的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.
12.将一副三角尺按如图所示的方式叠放在一起,边AC与BD相交于点E,则的值等于_________.
13.已知m是方程x2﹣3x﹣1=0的一个根,则代数式2m2﹣6m﹣7的值等于_____.
14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则不等式ax2<bx+c的解集是______.
15.如图,位似图形由三角尺与其灯光下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为_______㎝.
16.若抛物线经过(3,0),对称轴经过(1,0),则_______.
17.如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为_______cm.
18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.
三、解答题(共66分)
19.(10分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.
20.(6分)已知反比例函数的图象与一次函数的图象相交于点(2,1).
(1)分别求出这两个函数的解析式;
(2)试判断点P(-1,5)关于x轴的对称点P'是否在一次函数图象上.
21.(6分)元元同学在数学课上遇到这样一个问题:
如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.
图1 图2
元元的做法如下,请你帮忙补全解题过程.
解:如图2,连接
,
是⊙的直径. (依据是 )
且
(依据是 )
.即⊙的半径为 .
22.(8分)如图一座拱桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.、
(1)建立平面直角坐标系,并求该抛物线的函数表达式;
(2)若水面上升1m,水面宽度将减少多少?
23.(8分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;
(1)写出点D的坐标 ;
(2)若点E为x轴上一点,且S△AOE=,
①求点E的坐标;
②判断△AOE与△AOD是否相似并说明理由;
(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
24.(8分)如图,一次函数的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.
根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).
25.(10分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
26.(10分)阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.
探究线段AN、MN、CN之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”
小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”
小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”
老师: “若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”
(1)探究线段AN、AB之间的数量关系,并证明;
(2)探究线段AN、MN、CN之间的数量关系,并证明;
(3)设AB=a,求线段CM的长(用含a的式子表示).
参考答案
一、选择题(每小题3分,共30分)
1、A
2、B
3、A
4、B
5、A
6、B
7、D
8、C
9、B
10、C
二、填空题(每小题3分,共24分)
11、1.
12、
13、﹣1.
14、﹣2<x<1
15、20cm
16、1
17、16
18、
三、解答题(共66分)
19、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
20、(1),;(1)P'在一次函数图象上.
21、的圆周角所对的弦是直径;同弧所对的圆周角相等,
22、 (1)图见解析,抛物线的函数表达式为(注:因建立的平面直角坐标系的不同而不同);(2)
23、(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;
24、见解析
25、(1)y=﹣x+150(0<x≤90);(2)70
26、(1)(2)或,证明见解析(3)
选 手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
售价x(元/千克)
…
50
60
70
80
…
销售量y(千克)
…
100
90
80
70
…
广东省茂名市行知中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份广东省茂名市行知中学2023-2024学年数学九上期末质量检测试题含答案,共9页。试卷主要包含了下列各组图形中,是相似图形的是,方程x2-x-1=0的根是,的值等于等内容,欢迎下载使用。
2023-2024学年广东省茂名市九上数学期末综合测试模拟试题含答案: 这是一份2023-2024学年广东省茂名市九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年广东省高州市九校数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年广东省高州市九校数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。