广东省梅州市梅江区实验中学2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案
展开
这是一份广东省梅州市梅江区实验中学2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列四个数中,最小数的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.方程的解是( )
A.0B.3C.0或–3D.0或3
2.某楼盘2016年房价为每平方米11 000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为( )
A.9800(1-x)2+9800(1-x)+9800=11000B.9800(1+x)2+9800(1+x)+9800=11000
C.11000(1+x)2=9800D.11000(1-x)2=9800
3.的直径为,点与点的距离为,点的位置( )
A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定
4.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
5.一张圆形纸片,小芳进行了如下连续操作:
将圆形纸片左右对折,折痕为AB,如图.
将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.
将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.
连结AE、AF、BE、BF,如图.
经过以上操作,小芳得到了以下结论:
;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有
A.1个B.2个C.3个D.4个
6.一个三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长为( )
A.B.C.10或11D.不能确定
7.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面.则这个圆锥的底面圆的半径为( )
A.B.1C.D.2
8.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是( )
A.①②③B.①②④C.①③④D.②③④
9.下列四个数中,最小数的是( )
A.0B.﹣1C.D.
10.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为( )
A.64B.72C.80D.96
二、填空题(每小题3分,共24分)
11.函数y=中的自变量的取值范围是____________.
12.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________
13.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.
14.底角相等的两个等腰三角形_________相似.(填“一定”或“不一定”)
15.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.
16.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.
17.计算:|﹣3|﹣sin30°=_____.
18.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.
三、解答题(共66分)
19.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
20.(6分)在平面直角坐标系中,存在抛物线以及两点和.
(1)求该抛物线的顶点坐标;
(2)若该抛物线经过点,求此抛物线的表达式;
(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.
21.(6分)如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.
(1)求证:△BOQ≌△POQ;
(2)若直径AB的长为1.
①当PE= 时,四边形BOPQ为正方形;
②当PE= 时,四边形AEOP为菱形.
22.(8分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?
(2)当AB=3时,求□ABCD的周长.
23.(8分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.
(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;
(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.
24.(8分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
25.(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.
(1)求抛物线的函数表达式;
(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;
(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.
26.(10分)先化简,后求值:,其中.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、A
4、B
5、D
6、B
7、A
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、x≠1
12、
13、
14、一定
15、
16、120°.
17、
18、5
三、解答题(共66分)
19、(1)0.3 ,45;(2)108°;(3).
20、(1)(0,2);(2);(3)m=2或.
21、(1)见解析;(2)①6,②6.
22、(1);(2)1
23、(1)抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)当m=﹣时,S最大=
24、 (1)60;(2)四边形ACFD是菱形.理由见解析.
25、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.
26、,
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
相关试卷
这是一份广东省梅州市梅江区实验中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔, “泱泱华夏,浩浩千秋,如图下列条件中不能判定的是,下列事件中,必然事件是等内容,欢迎下载使用。
这是一份2023-2024学年广东省阳江市实验中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列事件中是随机事件的是,下列事件中,为必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年广东省实验中学数学九年级第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法,错误的是,如图,的直径,弦于等内容,欢迎下载使用。