广东省肇庆市端州区2023-2024学年九上数学期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )
A.B.C.D.
2.一元二次方程x2﹣2x﹣1=0的根是( )
A.x1=1,x2=2B.x1=﹣1,x2=﹣2
C.x1=1+,x2=1﹣D.x1=1+,x2=1﹣
3.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·DG.其中正确的是( )
A.①②③④B.①②③C.①③④D.①②
4.方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,则m的值为( )
A.任何实数.B.m≠0C.m≠2D.m≠﹣2
5.在一个万人的小镇,随机调查了人,其中人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是( )
A.B.C.D.
6.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )
A.B.C.D.
7.下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.明天晚上会看到太阳
C.五个人分成四组,这四组中有一组必有2人
D.三天内一定会下雨
8.中,,是边上的高,若,则等于( )
A.B.或C.D.或
9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )
A.5B.6C.2D.3
10.经过两年时间,我市的污水利用率提高了.设这两年污水利用率的平均增长率是,则列出的关于的一元二次方程为( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
12.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,
,则线段EF的长为______.
13.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.
14.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.
15.已知,则的值为______.
16.从长度为2cm、4cm、6cm、8cm的4根木棒中随机抽取一根,能与长度为3cm和5cm的木棒围成三角形的概率为_____.
17.在中,,,,则____________
18.如图,半径为3的圆经过原点和点,点是轴左侧圆优弧上一点,则_____.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.
20.(6分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD= cm,压柄与托板的长度相等.
(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.
(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)
21.(6分)如图,已知平行四边形中,,,.平行四边形的顶点在线段上(点在的左边),顶点分别在线段和上.
(1)求证:;
(2)如图1,将沿直线折叠得到,当恰好经过点时,求证:四边形是菱形;
(3)如图2,若四边形是矩形,且,求的长.(结果中的分母可保留根式)
22.(8分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
23.(8分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
24.(8分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若AE=5,AC=4,求BE的长.
25.(10分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同
(1)求这两年该区投入教育经费的年平均增长率
(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元
26.(10分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕 点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、A
4、C
5、D
6、C
7、C
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、1.
12、3
13、
14、
15、
16、
17、
18、
三、解答题(共66分)
19、(1)k=32;
(2)菱形ABCD平移的距离为.
20、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.
21、(1)详见解析;(2)详见解析;(3)
22、(1)证明见解析;(2)
23、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.
24、(1)证明见解析;(2).
25、(1)20%;(2)15552万元
26、详见解析.
广东省肇庆市端州区地质中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份广东省肇庆市端州区地质中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,学校要组织足球比赛等内容,欢迎下载使用。
2023-2024学年广东省肇庆市端州区五校数学九上期末联考模拟试题含答案: 这是一份2023-2024学年广东省肇庆市端州区五校数学九上期末联考模拟试题含答案,共8页。试卷主要包含了如图,在中,,,,,则的长为,下列事件属于必然事件的是等内容,欢迎下载使用。
2023-2024学年广东省肇庆市端州区端州区南国中学英文学校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年广东省肇庆市端州区端州区南国中学英文学校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在中,若,则的长是等内容,欢迎下载使用。