广东省肇庆市德庆县2023-2024学年数学九上期末统考模拟试题含答案
展开
这是一份广东省肇庆市德庆县2023-2024学年数学九上期末统考模拟试题含答案,共7页。试卷主要包含了要使式子有意义,则x的值可以是,下列命题正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.方程的两根分别是,则等于 ( )
A.1B.-1C.3D.-3
2.反比例函数(x<0)如图所示,则矩形OAPB的面积是( )
A.-4B.-2C.2D.4
3.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有( )个.
(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GE
A.1B.2C.3D.4
4.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( )
A.B.C.D.
5.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)( )
A.24﹣4πB.32﹣4πC.32﹣8πD.16
6.如图,是⊙的直径,弦⊥于点,,则( )
A.B.C.D.
7.要使式子有意义,则x的值可以是( )
A.2B.0C.1D.9
8.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是( )
A.①③B.①③④C.①②③D.①②③④
9.下列对二次函数y=x2﹣x的图象的描述,正确的是( )
A.开口向下B.对称轴是y轴
C.经过原点D.在对称轴右侧部分是下降的
10.下列命题正确的是( )
A.长度为5cm、2cm和3cm的三条线段可以组成三角形
B.的平方根是±4
C.是实数,点一定在第一象限
D.两条直线被第三条直线所截,同位角相等
二、填空题(每小题3分,共24分)
11.若,则__________.
12.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.
13.关于的一元二次方程有两个不相等的实数根,则整数的最大值是______.
14.如图所示,平面上七个点,,,,,,,图中所有的连线长均相等,则______.
15.已知某个正六边形的周长为,则这个正六边形的边心距是__________.
16.计算sin60°tan60°-cs45°cs60°的结果为______.
17.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.
18..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.
三、解答题(共66分)
19.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=2,求图中阴影部分的面积.
20.(6分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率.
21.(6分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?
22.(8分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
23.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.
(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;
(2)求旋转过程中动点B所经过的路径长(结果保留π).
24.(8分)知识改变世界,科技改变生活,导航装备的不断更新极大方便了人们的出行.周末,小强一家到两处景区游玩,他们从家处出发,向正西行驶160到达处,测得处在处的北偏西15°方向上,出发时测得处在处的北偏西60°方向上
(1)填空: 度;
(2)求处到处的距离即的长度(结果保留根号)
25.(10分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
26.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.
(1)求的大小;
(2)求的长.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、A
5、A
6、A
7、D
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、1
13、1
14、
15、
16、1
17、
18、甲
三、解答题(共66分)
19、(1)证明见解析;(2)阴影部分面积为
20、(1)(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)
21、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.
22、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.
23、 (1)画图见解析;(2)点B所经过的路径长为.
24、(1)45;(2)
25、(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.
26、(1);(2)
相关试卷
这是一份2023-2024学年广东省肇庆市德庆县九年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省肇庆市德庆县九年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份广东省肇庆市端州区2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了方程,下列事件中,属于必然事件的是,中,,是边上的高,若,则等于等内容,欢迎下载使用。