江苏省句容市华阳学校2023-2024学年数学九上期末经典模拟试题含答案
展开
这是一份江苏省句容市华阳学校2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,对于函数,下列结论错误的是,的倒数是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为( )
A.2,22.5°B.3,30°C.3,22.5°D.2,30°
2.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为( )
A.3米B.3米C.(3﹣2)米D.(3﹣3)米
3.如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于的中点. 若,则的值为( )
A.6B.8C.10D.12
4.下列图象能表示y是x的函数的是( )
A.B.
C.D.
5.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于( )
A.B.C.D.
6.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是( )
A.t=20vB.t=C.t=D.t=
7.对于函数,下列结论错误的是( )
A.图象顶点是B.图象开口向上
C.图象关于直线对称D.图象最大值为﹣9
8.的倒数是( )
A.1B.2C.D.
9.从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是( )
A.5B.8C.10D.15
10.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.
12.已知二次函数,当x_______________时,随的增大而减小.
13.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC•AB;
③若AB=4,∠APE=30°,则的长为;
④若AC=3,BD=1,则有CM=DM=.
14.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.
15.如图,已知点P是△ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF//BC,交AB于点F,若四边形BEDF的面积为4,则△ABC的面积为__________
16.抛物线在对称轴_____(填“左侧”或“右侧”)的部分是下降的.
17.已知,则的值是_______.
18.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.
三、解答题(共66分)
19.(10分)计算:2cs30°-tan45°-.
20.(6分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.
(1)从中任取一球,求所抽取的数字恰好为负数的概率;
(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.
21.(6分)如图1.正方形的边长为,点在上,且.
如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;
如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).
22.(8分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
23.(8分)如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过两点分别作的垂线,垂足分别为,连接.
求证:(1)平分;
(2)若,求的长.
24.(8分)某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:
(1)扇形统计图中D类所对应的圆心角度数为 ,并补全折线统计图;
(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.
25.(10分)某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):
设参加旅游的员工人数为x人.
(1)当25<x<40时,人均费用为 元,当x≥40时,人均费用为 元;
(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?
26.(10分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、D
4、D
5、C
6、B
7、D
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、1
12、<2(或x≤2).
13、①②④
14、y=-(x﹣4)2+1
15、9
16、右侧
17、
18、
三、解答题(共66分)
19、-1.
20、(1)所抽取的数字恰好为负数的概率是;(2)点(x,y)在直线y=﹣x﹣1上的概率是.
21、(1);(2)
22、(2)y=﹣x2﹣x+2; (2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.
23、(1)见解析;(2)
24、(1);(2)画图见解析,.
25、(1)1000﹣20(x﹣25);1.(2)30名
26、(2)y=-x2+2x+2.(2)P的坐标(2,2).(2)存在.点M的坐标为(2,),(2,-),(2,2),(2,0).
相关试卷
这是一份江苏省句容市华阳片2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=x2﹣4x+2不经过,已知,如果点与点关于原点对称,则,抛物线y=,已知二次函数y=x2﹣6x+m等内容,欢迎下载使用。
这是一份2023-2024学年江苏省句容市华阳中学九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年江苏省句容市华阳片区数学九上期末检测模拟试题含答案,共8页。试卷主要包含了的相反数是,关于抛物线,下列说法错误的是,设A,关于的方程的根的情况,正确的是等内容,欢迎下载使用。