江苏省扬州市广陵区梅岭中学2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开
这是一份江苏省扬州市广陵区梅岭中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共7页。试卷主要包含了若函数y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是( )
A.﹣6B.6C.﹣2D.2
2.下列运算中,正确的是( ).
A.2x x 2B.x2 y y x2C.x x4 2xD.2x3 6x3
3.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2B.±4C.2D.±2
4.如图⊙O的直径垂直于弦,垂足是,,,的长为( )
A.B.4C.D.8
5.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为( )
A.B.C.D.
6.下列四个图形中,既是轴对称图形又是中心对称图形的有( )
A.4个 B.3个 C.2个 D.1个
7.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为( )
A.B.C.D.
8.如图,矩形的边在轴的正半轴上,点的坐标为,反比例函数的图象经过矩形对角线的交点,则的值是( )
A.8B.4C.2D.1
9.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为( )
A.3B.﹣3C.±3D.9
10.下列关于三角形的内心说法正确的是( )
A.内心是三角形三条角平分线的交点
B.内心是三角形三边中垂线的交点
C.内心到三角形三个顶点的距离相等
D.钝角三角形的内心在三角形外
二、填空题(每小题3分,共24分)
11.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.
12.已知关于 x 的一元二次方程x2+2x-a=0的两个实根为x1,x2,且,则 a的值为 .
13.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m
14.如图,点在反比例函数的图象上,过点作AB⊥轴,AC⊥轴,垂足分别为点,若,,则的值为____.
15.有一列数,,,,,,则第个数是_______.
16.如图,把直角三角板的直角顶点放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点、.量得,,则该圆玻璃镜的半径是__________.
17.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.
18.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.
三、解答题(共66分)
19.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
20.(6分)计算:2cs30°+sin45°﹣tan260°.
21.(6分)某中学准备举办一次演讲比赛,每班限定两人报名,初三(1)班的三位同学(两位女生,一位男生)都想报名参加,班主任李老师设计了一个摸球游戏,利用已学过的概率知识来决定谁去参加比赛,游戏规则如下:在一个不透明的箱子里放3个大小质地完全相同的乒乓球,在这3个乒乓球上分别写上、、(每个字母分别代表一位同学,其中、分别代表两位女生,代表男生),搅匀后,李老师从箱子里随机摸出一个乒乓球,不放回,再次搅匀后随机摸出第二个乒乓球,根据乒乓球上的字母决定谁去参加比赛。
(1)求李老师第一次摸出的乒乓球代表男生的概率;
(2)请用列表或画树状图的方法求恰好选定一名男生和一名女生参赛的概率.
22.(8分)如图,CD 为⊙O 的直径,弦 AB 交 CD 于点E,连接 BD、OB.
(1)求证:△AEC∽△DEB;
(2)若 CD⊥AB,AB=6,DE=1,求⊙O 的半径长.
23.(8分)如图,是圆的直径,点在圆上,分别连接、,过点作直线,使.求证:直线与圆相切.
24.(8分)先化简,再求值:,其中.
25.(10分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.
(1)求抛物线的函数表达式和点C的坐标;
(2)若△AQP∽△AOC,求点P的横坐标;
(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.
26.(10分)综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、C
5、A
6、B
7、B
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、3﹣
12、1.
13、6
14、
15、
16、1.
17、(2,10)或(﹣2,0)
18、x=4
三、解答题(共66分)
19、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
20、
21、(1)李老师第一次摸出的乒乓球代表男生的概率为;(2)恰好选定一名男生和t名女生参赛的概率为.
22、(1)见解析;(2)⊙O的半径为1.
23、见解析
24、;.
25、 (1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).
26、 (1);(2)3;(3).
相关试卷
这是一份2023-2024学年江苏省扬州市广陵区数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,若,则的长为等内容,欢迎下载使用。
这是一份江苏省扬州市梅岭中学2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了若a是方程的一个解,则的值为,两个相似三角形的面积比是9,的倒数是等内容,欢迎下载使用。
这是一份江苏省扬州市广陵区2023-2024学年数学九上期末联考模拟试题含答案,共8页。试卷主要包含了抛物线y=ax2+bx+c等内容,欢迎下载使用。