江苏省泰兴市实验初级中学2023-2024学年数学九上期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是( )
A.是表示甲离地的距离与时间关系的图象
B.乙的速度是
C.两人相遇时间在
D.当甲到达终点时乙距离终点还有
2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A.B. C.D.12
3.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是( )
A.图象开口向上 B.图象的对称轴是直线x=1
C.图象有最低点 D.图象的顶点坐标为(﹣1,2)
4.用配方法解方程时,原方程可变形为( )
A.B.C.D.
5.下列函数中,y关于x的二次函数是( )
A.y=ax2+bx+cB.y=x(x﹣1)
C.y=D.y=(x﹣1)2﹣x2
6.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是( )
A.平均数B.众数C.中位数D.方差
7.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1035B.x(x-1)=1035C.x(x+1)=1035D.x(x-1)=1035
8.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为( )
A.B.
C.D.
9.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0, ).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是( )
A.(1,0)B.(,)C.(1,)D.(-1,)
10.朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:
对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是
A.平均数B.中位数C.众数D.方差
二、填空题(每小题3分,共24分)
11.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.
12.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.
13.共享单车进入昆明市已两年,为市民的低碳出行带来了方便,据报道,昆明市共享单车投放量已达到240000辆,数字240000用科学记数法表示为_____.
14.建国70周年大阅兵时,以“同心共筑中国梦”为主题的群众游行队伍某表演方阵有8行12列,后又增加了429人,使得增加的行数和列数相同.请你计算增加了多少行. 若设增加了x行,由题意可列方程为_______________________ .
15.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.
16.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= .
17.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.
18.半径为5的圆内接正六边形的边心距为__________.
三、解答题(共66分)
19.(10分)已知抛物线y=2x2-12x+13
(1)当x为何值时,y有最小值,最小值是多少?
(2)当x为何值时,y随x的增大而减小
(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式
20.(6分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.
(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;
(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;
(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.
21.(6分)如图,中,,,为内部一点,且.
(1)求证:;
(2)求证:;
(3)若点到三角形的边,,的距离分别为,,,求证.
22.(8分)已知二次函数.
(1)用配方法求出函数的顶点坐标;
(2)求出该二次函数图象与轴的交点坐标。
(3)该图象向右平移 个单位,可使平移后所得图象经过坐标原点.请直接写出平移后所得图象与轴的另一个交点的坐标为 .
23.(8分)如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
24.(8分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.
(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.
(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;
(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.
①请你直接写出m的值和四边形AA2CC2的形状;
②若AB=,请直接写出AA2的长.
25.(10分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.
26.(10分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、B
5、B
6、C
7、B
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、1.
12、
13、2.4×1
14、
15、
16、1.
17、-6
18、
三、解答题(共66分)
19、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.
20、(1)见解析;(2)或;(3)
21、(1)见解析;(2)见解析;(3)见解析.
22、(1)(-1,8);(2)和;(3)3;(4,0)
23、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)
24、(1)n=60°;(2)见解析;(3)①m=120°,四边形AA2CC2是矩形;②AA2=3.
25、AB=2cm
26、(1)72,图详见解析;(2).
平均数
中位数
众数
方差
江苏省盐城初级中学2023-2024学年九上数学期末监测模拟试题含答案: 这是一份江苏省盐城初级中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了二次函数y=-2等内容,欢迎下载使用。
2023-2024学年江苏省泰兴市老叶初级中学九上数学期末考试模拟试题含答案: 这是一份2023-2024学年江苏省泰兴市老叶初级中学九上数学期末考试模拟试题含答案,共7页。
2023-2024学年江苏省泰兴市西城初级中学九上数学期末经典试题含答案: 这是一份2023-2024学年江苏省泰兴市西城初级中学九上数学期末经典试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,的直径,弦于,如图, 在同一坐标系中等内容,欢迎下载使用。