![江苏省泰兴市振宇外国语学校2023-2024学年九上数学期末统考试题含答案第1页](http://img-preview.51jiaoxi.com/2/3/15277337/0-1706142968837/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰兴市振宇外国语学校2023-2024学年九上数学期末统考试题含答案第2页](http://img-preview.51jiaoxi.com/2/3/15277337/0-1706142968872/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰兴市振宇外国语学校2023-2024学年九上数学期末统考试题含答案第3页](http://img-preview.51jiaoxi.com/2/3/15277337/0-1706142968902/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省泰兴市振宇外国语学校2023-2024学年九上数学期末统考试题含答案
展开
这是一份江苏省泰兴市振宇外国语学校2023-2024学年九上数学期末统考试题含答案,共8页。试卷主要包含了把二次函数配方后得等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为( )
A.10πB.
C.πD.π
2.将下列多项式分解因式,结果中不含因式x﹣1的是( )
A.x2﹣1B.x2+2x+1C.x2﹣2x+1D.x(x﹣2)﹣(x﹣2)
3.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为( )
A.1B.2C.3D.4
4.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( )
A.小明认为只有当时,函数值为1;
B.小亮认为找不到实数,使函数值为0;
C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;
D.小梅发现函数值随的变化而变化,因此认为没有最小值
5.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )
A.2cmB.3cmC.4cmD.1cm
6.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度( )
A.变大B.变小C.不变D.不能确定
7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是( )
A.(31﹣1x)(10﹣x)=570B.31x+1×10x=31×10﹣570
C.(31﹣x)(10﹣x)=31×10﹣570D.31x+1×10x﹣1x1=570
8.如图,在ABC中,点D为BC边上的一点,且AD=AB=5, AD⊥AB于点A,过点D作DE⊥AD,DE交AC于点E,若DE=2,则ADC的面积为( )
A.B.4C.D.
9.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为( )
A.(,1)B.(1,)C.(1,2)D.(2,1)
10.把二次函数配方后得( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.,两点都在二次函数的图像上,则的大小关系是____________.
12.已知,.且,设,则的取值范围是______.
13.若二次函数的图象与x轴只有一个公共点,则实数n=______.
14.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.
15.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.
16.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.
17.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.
18.在Rt△ABC中,∠C=90,AB=4,BC=3,则sinA的值是______________.
三、解答题(共66分)
19.(10分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.
20.(6分) 解方程组: ;
化简: .
21.(6分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果按此速度增涨,该公司六月份的快递件数将达到多少万件?
22.(8分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),对称轴为x=1,点D与C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线上的一点,当△ABP的面积是8时,求出点P的坐标;
(3)点M为直线AD下方抛物线上一动点,设点M的横坐标为m,当m为何值时,△ADM的面积最大?并求出这个最大值.
23.(8分)如图,反比例函数y=(k≠0,x>0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中点,D为x轴负半轴上的点.
(1)求反比倒函数的表达式和点F的坐标;
(2)若D(﹣,0),连接DE、DF、EF,则△DEF的面积是 .
24.(8分)计算
(1)
(2)
(3)
(4)
25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
26.(10分)某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、D
5、A
6、C
7、A
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、>
12、
13、1.
14、1
15、 (3,﹣10)
16、1
17、2或或.
18、
三、解答题(共66分)
19、
20、; m
21、(1)10%;(2)13.31
22、(2)y=x2﹣2x﹣3,D(2,﹣3);(2)P(2﹣2,4)或(2+2,4)或(2,﹣4);(3)m=时,△AMD的最大值为
23、(1)y=,F(3,3);(2)S△DEF=1.
24、 (1) ;(2);(3) ;(4)3
25、(1)60°;(2)证明略;(3)
26、(1)45°;(2);(3)29.
相关试卷
这是一份江苏南京市东山外国语学校2023-2024学年九上数学期末统考试题含答案,共7页。试卷主要包含了方程x=x的根是等内容,欢迎下载使用。
这是一份山东省泰山外国语学校2023-2024学年九上数学期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=,一元二次方程配方后化为等内容,欢迎下载使用。
这是一份2023-2024学年江苏省泰兴市黄桥初级中学数学九上期末统考试题含答案,共7页。试卷主要包含了函数中,自变量的取值范围是,方程﹣1=的解是等内容,欢迎下载使用。