江苏省苏南五市联考2023-2024学年九年级数学第一学期期末教学质量检测试题含答案
展开
这是一份江苏省苏南五市联考2023-2024学年九年级数学第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了下列函数的图象,不经过原点的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27°B.34°C.36°D.54°
2.如图,抛物线=与轴交于点,其对称轴为直线,结合图象分析下列结论:
① ; ② ;
③ >0; ④当时,随的增大而增大;
⑤ ≤(m为实数),其中正确的结论有( )
A.2个B.3个C.4个D.5个
3.已知二次函数(是常数),下列结论正确的是( )
A.当时,函数图象经过点
B.当时,函数图象与轴没有交点
C.当时,函数图象的顶点始终在轴下方
D.当时,则时,随的增大而增大.
4.下列四个几何体中,主视图是三角形的是( )
A. B. C. D.
5.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
6.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为 ( )
A.20°B.25°C.30°D.50°
7.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为( )
A.B.C.D.
8.下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是( )
A.B.C.D.
9.如图,点、分别在的边、上,且与不平行.下列条件中,能判定与相似的是( )
A.B.C.D.
10.下列函数的图象,不经过原点的是( )
A.B.y=2x2C.y=(x﹣1)2﹣1D.
二、填空题(每小题3分,共24分)
11.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.
12.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.
13.已知关于x的一元二次方程(a-1)x2-x + a2-1=0的一个根是0,那么a的值为 .
14.如图,是的直径,弦交于点,,,,则的长为_____.
15.分解因式:___.
16.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.
17.如图,在Rt△ABC中,∠C=90°,点D为BC上一点,AD=BD,CD=1,AC=,则∠B的度数为_________________ .
18.如果关于的方程有两个相等的实数根,那么的值为________,此时方程的根为_______.
三、解答题(共66分)
19.(10分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.
(1)如图1,若点M在线段BD上.
① 依据题意补全图1;
② 求∠MCE的度数.
(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系 .
20.(6分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对雾霾天气了解程度的统计图
对雾霾天气了解程度的统计图
对雾霾天气了解程度的统计表
请结合统计图表,回答下列问题:
(1)本次参与调查的学生共有______人,______;
(2)请补全条形统计图;
(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.
21.(6分)今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式),请直接写出x的取值范围;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
22.(8分)某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
23.(8分)已知,如图,在平面直角坐标系中,直线 与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.
(1)直接写出点A和点B的坐标;
(2)求抛物线的函数解析式;
(3)D为直线AB下方抛物线上一动点;
①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;
②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.
24.(8分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出y1>y2 时,x的取值范围.
25.(10分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.
(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;
(Ⅱ)求两次取出的小球标号相同的概率;
(Ⅲ)求两次取出的小球标号的和大于6的概率.
26.(10分)现有红色和蓝色两个布袋,红色布袋中有三个除标号外完全相同的小球,小球上分别标有数字1,2,3,蓝色布袋中有也三个除标号外完全相同的小球,小球上分别标有数字2,3,4小明先从红布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从蓝布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)用列表法或树状图表示出两次取得的小球上所标数字的所有可能结果;
(2)若把m、n分别作为点A的横坐标和纵坐标,求点A(m,n)在函数y=的图象上的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、D
4、B
5、A
6、B
7、A
8、D
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、100°
13、-1
14、
15、.
16、
17、30°.
18、1
三、解答题(共66分)
19、(1)①见解析;②∠MCE=∠F=45°;(2)
20、(1)400,35%;(2)条形统计图见解析;(3)不公平.
21、(1)y=﹣2x+340(20≤x≤40);(2)5200
22、(1)20%;(2)每千克应涨价5元.
23、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).
24、(1)y1=-2x+4,y2=-;(2)x
相关试卷
这是一份江苏省盐城响水县联考2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,,则下列比例式错误的是,若,则的值为等内容,欢迎下载使用。
这是一份江苏省南京建邺区六校联考2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共9页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份江苏省东台市2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数图像的顶点坐标为,抛物线的对称轴是等内容,欢迎下载使用。