江苏省镇江市京口中学2023-2024学年数学九上期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为( )
A.B.C.D.
2.已知M(1,2),则M关于原点的对称点N落在( )
A.的图象上B.的图象上C.的图象上D.的图象上
3.下列方程中是一元二次方程的是( )
A.xy+2=1B.
C.x2=0D.ax2+bx+c=0
4.已知抛物线的解析式为,则下列说法中错误的是( )
A.确定抛物线的开口方向与大小
B.若将抛物线沿轴平移,则,的值不变
C.若将抛物线沿轴平移,则的值不变
D.若将抛物线沿直线:平移,则、、的值全变
5.下列航空公司的标志中,是轴对称图形的是( )
A.B.C.D.
6.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正确的有( )
A.①②B.①④⑤C.①②④⑤D.①②③④⑤
7.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为( )
A.B.
C.D.
8.下列说法中正确的是( )
A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦
9.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是( )
A.﹣7<y<﹣4B.﹣7<y≤﹣3C.﹣7≤y<﹣3D.﹣4<y≤﹣3
10.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141°B.144°C.147°D.150°
二、填空题(每小题3分,共24分)
11.方程ax2+x+1=0 有两个不等的实数根,则a的取值范围是________.
12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中x与y的部分对应值如下表
那么当x=4时,y的值为___________.
13.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为 .
14.在比例尺为1∶500 000的地图上,量得A、B两地的距离为3 cm,则A、B两地的实际距离为_____km.
15.已知点,都在反比例函数图象上,则____(填“”或“”或“”).
16.使代数式有意义的实数x的取值范围为_____.
17.抛物线的开口方向是_____.
18.已知正方形的一条对角线长,则该正方形的周长是___________.
三、解答题(共66分)
19.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
20.(6分)(阅读)
辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.
性质:如图①,若,则点在经过,,三点的圆上.
(问题解决)
运用上述材料中的信息解决以下问题:
(1)如图②,已知.求证:.
(2)如图③,点,位于直线两侧.用尺规在直线上作出点,使得.(要求:要有画图痕迹,不用写画法)
(3)如图④,在四边形中,,,点在的延长线上,连接,.求证:是外接圆的切线.
21.(6分)某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率.
22.(8分)如图,一次函数的图象与反比例函数的图象交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)直接写出的面积 .
23.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.
(1)请判断的形状,并说明理由;
(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;
(3)当,求PA+PB+PC的最小值.
24.(8分)经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.
(1)求反比例函数的表达式;
(2)若△ABC的面积为6,求直线AC的函数表达式;
(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC=90°,则点P的坐标是 .
25.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,抛物线的对称轴x=1,与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的解析式及A、B点的坐标.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形;若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大;求出此时P点的坐标和四边形ABPC的最大面积.
26.(10分)(1)计算:.
(2)用适当方法解方程:
(3)用配方法解方程:
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、D
5、C
6、C
7、A
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、且a≠0
12、-1
13、2m
14、1
15、
16、
17、向上
18、
三、解答题(共66分)
19、(1)(2).
20、(1)见解析;(2)见解析;(3)见解析
21、该企业从2015年到2017年利润的年平均增长率为20%
22、(1)y=﹣x+5,y=;(2)
23、(1)等边三角形,见解析;(2)见解析;(3)
24、(1)反比例函数的表达式为y=(2)直线AC的函数表达式为y=x﹣1;(3)(,8).
25、(1)y=x2﹣2x﹣3,点A、B的坐标分别为:(﹣1,0)、(3,0);(2)存在,点P(1+,﹣);(3)故S有最大值为,此时点P(,﹣).
26、(1)3;(2) x1=,x2=;(3) x1=1+,x2=1−.
x
-1
0
1
3
y
-1
3
5
3
江苏省镇江市实验2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份江苏省镇江市实验2023-2024学年数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,《九章算术》中记载一问题如下,如图,AB是⊙O的弦等内容,欢迎下载使用。
江苏省邗江中学2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份江苏省邗江中学2023-2024学年数学九上期末学业质量监测试题含答案,共8页。
江苏省无锡市江南中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份江苏省无锡市江南中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。