江西省上饶县七中2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案
展开
这是一份江西省上饶县七中2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )
A.m≠1B.m=1C.m≥1D.m≠0
2.已知反比例函数图象如图所示,下列说法正确的是( )
A.
B.随的增大而减小
C.若矩形面积为2,则
D.若图象上两个点的坐标分别是,,则
3.如图,在中,,则的长度为
A.1B.C.D.
4.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为( )
A.4个B.3个C.2个D.1个
5.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P ( )
A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O内部
6.赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于( )
A.2mB.4mC.10mD.16m
7.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )
A.120°B.130°C.140°D.150°
8.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
9.下列运算正确的是( )
A.B.
C.D.
10.现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是( )
A.处B.国C.敬D.王
二、填空题(每小题3分,共24分)
11.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
12.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.
13.建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.
14.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.
15.已知二次函数的图象如图所示,下列结论:①;②;③;④,其中正确的是_________.(把所有正确结论的序号都填在横线上)
16.如图,是正三角形,D、E分别是BC、AC 上的点,当=_______时,~.
17.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.
18.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.
三、解答题(共66分)
19.(10分)若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.
(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;
(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.
20.(6分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,
(1)求抛物线的解析式;
(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.
①求此时m的值.
②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
21.(6分)已知,在中,,,点为的中点.
(1)若点、分别是、的中点,则线段与的数量关系是 ;线段与的位置关系是 ;
(2)如图①,若点、分别是、上的点,且,上述结论是否依然成立,若成立,请证明;若不成立,请说明理由;
(3)如图②,若点、分别为、延长线上的点,且,直接写出的面积.
22.(8分)如图,在梯形中,,,,,,点在边上,,点是射线上一个动点(不与点、重合),联结交射线于点,设,.
(1)求的长;
(2)当动点在线段上时,试求与之间的函数解析式,并写出函数的定义域;
(3)当动点运动时,直线与直线的夹角等于,请直接写出这时线段的长.
23.(8分)在如图的小正方形网格中,每个小正方形的边长均为,格点(顶点是网格线的交点)的三个顶点坐标分别是,以为位似中心在网格内画出的位似图△A1B1C1,使与的相似比为,并计算出的面积.
24.(8分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.
(1)求证CD为⊙O的切线;
(2)当CF=1且∠D=30°时,求⊙O的半径.
25.(10分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价之间的函数关系式;
(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?
(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?
26.(10分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为, 且.
在平面直角坐标系中标出点,写出点的坐标并连接;
画出关于点成中心对称的图形.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、C
4、B
5、D
6、B
7、C
8、B
9、B
10、D
二、填空题(每小题3分,共24分)
11、不公平.
12、1
13、14; 1
14、
15、①②③
16、60°
17、1
18、
三、解答题(共66分)
19、(1);(2)小于300的“差数”有101,110,202,211,220,n是“差数”,
20、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为
21、(1),;(2)成立,证明见解析;(3)1.
22、(1);(1);(3)线段的长为或13
23、画图见解析,的面积为1.
24、(1)证明见解析;(2).
25、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元
26、(1)作图见解析;(2)作图见解析.
相关试卷
这是一份江西省上饶上饶县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份2023-2024学年江西省吉安市吉州区数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了已知一组数据,下列函数中,是反比例函数的是等内容,欢迎下载使用。
这是一份2023-2024学年江西省宁都县九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知抛物线y=ax2+bx+c,下列四个数中,最小数的是等内容,欢迎下载使用。