河北省保定市莲池区2023-2024学年九上数学期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为( )
A.(6,4)B.(6,2)C.(4,4)D.(8,4)
2.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为( )
A.3:1B.4:1C.5:1D.6:1
3.点A(﹣3,2)关于x轴的对称点A′的坐标为( )
A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)
4.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为( ).
A.2B.3C.D.
5.反比例函数的图象经过点,,当时,的取值范围是( )
A.B.C.D.
6.若二次函数的图象与 轴仅有一个公共点,则常数的为( )
A.1B.±1C.-1D.
7.已知反比例函数的图象经过点,小良说了四句话,其中正确的是( )
A.当时,B.函数的图象只在第一象限
C.随的增大而增大D.点不在此函数的图象上
8.已知与各边相切于点,,则的半径( )
A.B.C.D.
9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A.B.C.D.
10.二次函数图象如图,下列结论正确的是( )
A.B.若且,则
C.D.当时,
二、填空题(每小题3分,共24分)
11.如图,在平面直角坐标系中,点A的坐标为,反比例函数的图象经过线段OA的中点B,则k=_____.
12.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.
13.若函数y=(k-2)是反比例函数,则k=______.
14.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.
15.已知x1,x2是关于x的方程x2﹣kx+3=0的两根,且满足x1+x2﹣x1x2=4,则k的值为_____.
16.一个质地均匀的小正方体,六个面分别标有数字1,1,2,4,5,5,随机掷一次小正方体,朝上一面的数字是奇数的概率是__________.
17.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径. 若∠P=60°,PA=6,则BC的长为__________.
18.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).
三、解答题(共66分)
19.(10分)如图,某实践小组为测量某大学的旗杆和教学楼的高,先在处用高米的测角仪测得旗杆顶端的仰角,此时教学楼顶端恰好在视线上,再向前走米到达处,又测得教学楼顶端的仰角,点三点在同一水平线上,(参考数据:)
(1)计算旗杆的高;
(2)计算教学楼的高.
20.(6分)已知在△ABC中,∠A=∠B=30°.
(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;
(2)在(1)中所作的图中,求证:BC是⊙O的切线.
21.(6分)如图,在平面直角坐标系中,抛物线与轴交于两点,点.
(1)当时,求抛物线的顶点坐标及线段的长度;
(2)若点关于点的对称点恰好也落在抛物线上,求的值.
22.(8分)某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:
(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:
表中数据a= ,b= ,c= .
(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.
23.(8分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:
如果日销售量y (袋)是每袋的售价x(元)的一次函数,请回答下列问题:
(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;
(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;
(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?
(提示:每袋的利润=每袋的售价每袋的成本)
24.(8分)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).
(1)求实数、、的值;
(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.
(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.
25.(10分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().
(1)求与之间的函数表达式,并注明自变量的取值范围.
(2)当为何值时,有最大值?最大值是多少?
26.(10分)如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、A
5、B
6、C
7、D
8、C
9、D
10、D
二、填空题(每小题3分,共24分)
11、-2
12、或
13、-1
14、1:1.
15、2
16、
17、
18、y=﹣(x﹣1)2+1(答案不唯一)
三、解答题(共66分)
19、(1)旗杆的高约为米;(2)教学楼的高约为米.
20、(1)见解析;(2)见解析
21、(1)顶点坐标为(3,9),OA=6;(2)m=2
22、解:(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.
23、(1);(2)P=;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.
24、(1),;(1)存在,,,,,;(3)
25、(1);(2)时,有最大值
26、(1);;(2)或;
每袋的售价(元)
…
20
30
…
日销售量(袋)
…
20
10
…
河北省保定市莲池区十三中学2023-2024学年数学九上期末达标测试试题含答案: 这是一份河北省保定市莲池区十三中学2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了边长等于6的正六边形的半径等于等内容,欢迎下载使用。
2023-2024学年河北省保定市莲池区冀英学校数学九上期末综合测试模拟试题含答案: 这是一份2023-2024学年河北省保定市莲池区冀英学校数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了如图,切于两点,切于点,交于等内容,欢迎下载使用。
河北省保定市莲池区2023-2024学年七年级上学期期末数学模拟试题(含答案): 这是一份河北省保定市莲池区2023-2024学年七年级上学期期末数学模拟试题(含答案),共9页。