河北省廊坊市5月份2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列说法正确的是( )
A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆
C.平分弦的直径垂直于弦D.每个三角形都有一个外接圆
2.某盏路灯照射的空间可以看成如图所示的圆锥,它的高米,底面半径米,则圆锥的侧面积是多少平方米(结果保留). ( )
A.B.C.D.
3.在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为,则这个袋子中蓝球的个数是( )
A.3个B.4个C.5个D.12个
4.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
5.正八边形的中心角为( )
A.45°B.60°C.80°D.90°
6.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)( )
A.4.64海里B.5.49海里C.6.12海里D.6.21海里
7.如图,点,在双曲线上,且.若的面积为,则( ).
A.7B.C.D.
8.双曲线y=在第一、三象限内,则k的取值范围是( )
A.k>0B.k<0C.k>1D.k<1
9.﹣2019的倒数的相反数是( )
A.﹣2019B.C.D.2019
10.在中,,则的正切值为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在二次根式中的取值范围是__________.
12.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.
13.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.
14.已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF的面积为36,则△ABC的面积等于________.
15.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
16.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是_____.
17.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,测第70次旋转结束时,点D的坐标为_____.
18.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.
三、解答题(共66分)
19.(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.
(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;
(2)求旋转过程中动点B所经过的路径长(结果保留π).
20.(6分)一次函数y=x+2与y=2x﹣m相交于点M(3,n),解不等式组,并将解集在数轴上表示出来.
21.(6分)已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,
(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;
(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;
(3)在第(2)小题的条件下,求的值.
22.(8分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.
(1)求B、D两点的坐标;
(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;
(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
23.(8分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
24.(8分)如图,是的外接圆,为直径,的平分线交于点,过点的切线分别交,的延长线于点,,连接.
(1)求证:;
(2)若,,求的半径.
25.(10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.
(参考数据:≈1.414,≈1.1.结果精确到0.1米)
26.(10分)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、B
4、A
5、A
6、B
7、A
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、x<1
12、
13、6000
14、16
15、2
16、.
17、 (3,﹣10)
18、
三、解答题(共66分)
19、 (1)画图见解析;(2)点B所经过的路径长为.
20、﹣1<x≤3,见解析
21、(1)y=;(2)B(m+n,n﹣m);(3)
22、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)
23、(1)见解析;(2)的面积为;(3)、5、1、
24、(1)见解析;(2)1
25、商务楼的高度为37.9米.
26、(1)证明见解析;(2)PD =.
河北省廊坊市霸州市部分学校2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份河北省廊坊市霸州市部分学校2023-2024学年九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了设A,若∽,相似比为,则与的周长比为,某班7名女生的体重等内容,欢迎下载使用。
2023-2024学年河北省廊坊市广阳区九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年河北省廊坊市广阳区九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,反比例函数的图象分布的象限是等内容,欢迎下载使用。
2023-2024学年河北省衡水市八校九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年河北省衡水市八校九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在平面直角坐标系中,点,抛物线y=2等内容,欢迎下载使用。