河南省封丘市2023-2024学年数学九上期末统考试题含答案
展开
这是一份河南省封丘市2023-2024学年数学九上期末统考试题含答案,共9页。试卷主要包含了抛物线 y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.已知扇形的圆心角为60°,半径为1,则扇形的弧长为( )
A.B.πC.D.
2.下列函数中,函数值随自变量x的值增大而增大的是( )
A.B.C.D.
3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( )
A.B.C.D.
4.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )
A.0B.C.D.1
5.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )
A.1B.2C.D.
6.抛物线 y=(x﹣1)2﹣2 的顶点是( )
A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)
7.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么( )
A.a>0,y1>y2 B.a>0,y1<y2 C.a<0,y1>y2 D.a<0,y1<y2
8.如图是二次函数图象的一部分,图象过点,对称轴为直线,给出四个结论:①; ②;③若点、为函数图象上的两点,则;④关于的方程一定有两个不相等的实数根.其中,正确结论的是个数是( )
A.4B.3C.2D.1
9. “抛一枚均匀硬币,落地后正面朝上”这一事件是( )
A.必然事件B.随机事件C.确定事件D.不可能事件
10.关于抛物线y=x2﹣4x+4,下列说法错误的是( )
A.开口向上
B.与x轴有两个交点
C.对称轴是直线线x=2
D.当x>2时,y随x的增大而增大
二、填空题(每小题3分,共24分)
11.已知,则的值为___________.
12.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:
估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.
13.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的
位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .
14.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是______.
15.一个直角三角形的两直角边长分别为和,则这个直角三角形的面积是_____cm1.
16.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为_____.
17.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.
18.如图,等腰直角的顶点在正方形的对角线上,所在的直线交于点,交于点,连接,. 下列结论中,正确的有_________ (填序号).
①;②是的一个三等分点;③;④;⑤.
三、解答题(共66分)
19.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”活动.经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,最终没有学生得分低于25分,也没有学生得满分.根据测试成绩绘制出频数分布表和频数分布直方图(如图).
请结合图标完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若本次决赛的前5名是3名女生A、B、C和2名男生M、N,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生A和男生M的概率.
20.(6分)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)当销售单价为多少元时,销售这种童装每月可获利1800元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
21.(6分)如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.
(1)当点F与点A重合时,点G恰好到达点D,此时x= ,当EF⊥BC时,x= ;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;
(3)当S=15时,求此时x的值.
22.(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
23.(8分)如图,Rt△ABO的顶点A是双曲线 与直线y=−x−(k+1)在第二象限的交点,AB⊥x轴于B且S△ABO= .
(1)求这两个函数的解析式.
(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.
24.(8分)为支持大学生勤工俭学,市政府向某大学生提供了万元的无息贷款用于销售某种自主研发的产品,并约定该学生用经营的利润逐步偿还无息贷款,已知该产品的生产成本为每件元.每天还要支付其他费用元.该产品每天的销售量件与销售单价元关系为.
(1)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润为多少元?注:每天的利润每天的销售利润一每天的支出费用
(2)若销售单价不得低于其生产成本,且销售每件产品的利润率不能超过,则该学生最快用多少天可以还清无息贷款?
25.(10分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是, , .
(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;
(2) 的正弦值为 .
26.(10分)已知一次函数的图象与轴和轴分别交于、两点,与反比例函数的图象分别交于、两点.
(1)如图,当,点在线段上(不与点、重合)时,过点作轴和轴的垂线,垂足为、.当矩形的面积为2时,求出点的位置;
(2)如图,当时,在轴上是否存在点,使得以、、为顶点的三角形与相似?若存在,求出点的坐标;若不存在,说明理由;
(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、C
4、B
5、C
6、A
7、C
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、
12、0.2 3
13、5.5
14、
15、
16、60°
17、
18、①②④
三、解答题(共66分)
19、(1)16;(2)见解析;(3)图见解析,
20、(1)y=﹣2x+200 (30≤x≤60);(2)当销售单价为55元时,销售这种童装每月可获利1800元;(3)当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元.
21、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.
22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.
23、(1)y=﹣;y=﹣x+1(1)4.
24、(1)当销售单价定为25元时,日销售利润最大为200元;(2)该生最快用100天可以还清无息贷款.
25、(1)见解析;(2)
26、(1)或;(2)存在,或;(3)
苹果损坏的频率
0.106
0.097
0.101
0.098
0.099
0.101
成绩分组
频数
频率
50≤x<60
8
0.16
60≤x<70
12
a
70≤x<80
■
0.5
80≤x<90
3
0.06
90≤x≤100
b
c
合计
■
1
相关试卷
这是一份2023-2024学年河南省延津县九上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年河南省封丘数学九年级第一学期期末达标测试试题含答案,共8页。试卷主要包含了下列命题中,正确的个数是等内容,欢迎下载使用。
这是一份2023-2024学年河南省商丘市永城市九上数学期末统考模拟试题含答案,共6页。