泰安市泰山区2023-2024学年九年级数学第一学期期末经典模拟试题含答案
展开这是一份泰安市泰山区2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下面空心圆柱形物体的左视图是,下列函数中,是的反比例函数的是,若二次函数y=ax2+bx+c等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是( )
A.2B.C.D.
2.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为( )
A.130°B.135°C.140°D.145°
3.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为( )
A.πB.3πC.6πD.12π
4.下列四幅图案,在设计中用到了中心对称的图形是( )
A.B.C.D.
5.下面空心圆柱形物体的左视图是( )
A.B.C.D.
6.下列一元二次方程中,有两个不相等的实数根的是( )
A.B.C.D.
7.下列函数中,是的反比例函数的是( )
A.B.C.D.
8.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( ).
A.3个都是黑球B.2个黑球1个白球
C.2个白球1个黑球D.至少有1个黑球
9.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是( )
A.30° B.45° C.55° D.60°
10.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是( ).
A.x<﹣4或x>2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x<2
二、填空题(每小题3分,共24分)
11.二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_____.
12.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).
13.如图,是反比例函数的图象上一点,过点作轴交反比例函数的图象于点,已知的面积为,则的值为___________.
14.已知,若是一元二次方程的两个实数根,则的值是___________.
15.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′ 的度数是______________.
16.已知中,,的面积为1.
(1)如图,若点分别是边的中点,则四边形的面积是__________.
(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.
17.如图,平行四边形的顶点在轴正半轴上,平行于轴,直线交轴于点,,连接,反比例函数的图象经过点.已知,则的值是________.
18.对于实数a,b,定义运算“⊗”: ,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的两个根,则x1⊗x2=________.
三、解答题(共66分)
19.(10分)若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.
20.(6分)如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.
21.(6分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
22.(8分)如图,学校教学楼上悬挂一块长为的标语牌,即.数学活动课上,小明和小红要测量标语牌的底部点到地面的距离.测角仪支架高,小明在处测得标语牌底部点的仰角为,小红在处测得标语牌顶部点的仰角为,,依据他们测量的数据能否求出标语牌底部点到地面的距离的长?若能,请计算;若不能,请说明理由(图中点,,,,,,在同一平面内)
(参考数据:,,
23.(8分)如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.
(1)a= ,b= ;
(2)求D点的坐标;
(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;
(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
24.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?
25.(10分)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.
第一环节:写字注音、成语故事、国学常识、成语接龙(分别用表示);
第二环节:成语听写、诗词对句、经典通读(分别用表示)
(1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果
(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率.
26.(10分)已知二次函数y=x2-2mx+m2+m-1(m为常数).
(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;
(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是 .
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、D
5、A
6、B
7、B
8、D
9、D
10、D
二、填空题(每小题3分,共24分)
11、0,2
12、
13、4
14、6
15、105°
16、31.5; 26
17、1
18、±4
三、解答题(共66分)
19、
20、AB=2,BC= .
21、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
22、能,点到地面的距离的长约为.
23、(1)﹣1,﹣2;(2)D(1,4);(3)Q1(0,6),Q2(0,﹣6),Q3(0,2);(4)不变,的定值为,证明见解析
24、
25、(1)见解析(2)
26、(1)证明见解析;(2)k≥.
相关试卷
这是一份山东省泰安市泰山区2023-2024学年九年级上册期末数学模拟试题(附答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省泰安市泰山区大津口中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共7页。
这是一份2023-2024学年泰安市泰山区数学九年级第一学期期末联考试题含答案,共7页。试卷主要包含了计算,﹣2019的倒数的相反数是,点P等内容,欢迎下载使用。