江苏省镇江新区大港中学2023-2024学年数学九上期末学业水平测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.张华同学的身高为米,某一时刻他在阳光下的影长为米,同时与他邻近的一棵树的影长为米,则这棵树的高为()
A.米B.米C.米D.米
2.已知一次函数与反比例函数的图象有2个公共点,则的取值范围是( )
A.B.C.或D.
3.若两个相似三角形的面积之比为1:4,则它们的周长之比为( )
A.1:2B.2:1C.1:4D.4:1
4.正六边形的周长为12,则它的面积为( )
A.B.C.D.
5.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )
A.B.C.D.
6.若函数y=的图象在第一、三象限内,则m的取值范围是( )
A.m>﹣3B.m<﹣3C.m>3D.m<3
7.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有( ).
A.①③B.②④C.①②D.③④
8.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( )
A.B.C.D.
9.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:
①点C的坐标为(0,m);
②当m=0时,△ABD是等腰直角三角形;
③若a=-1,则b=4;
④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.
其中结论正确的序号是( )
A.①②B.①②③C.①②④D.②③④
10.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为( )
A.B.C.D.3
二、填空题(每小题3分,共24分)
11.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .
12.已知=,则的值是_______.
13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
14.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.
15.如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为_______________cm
16.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
17.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数的图象相交于点和点,则关于x的不等式的解集是_____.
18.已知分别切于点,为上不同于的一点,,则的度数是_______.
三、解答题(共66分)
19.(10分)如图,已知三个顶点的坐标分别为,,
(1)请在网格中,画出线段关于原点对称的线段;
(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;
(3)若另有一点,连接,则 .
20.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)
21.(6分) “红灯停,绿灯行”是我们过路口遇见交通信号灯时必须遵守的规则.小明每天从家骑自行车上学要经过三个路口,假如每个路口交通信号灯中红灯和绿灯亮的时间相同,且每个路口的交通信号灯只安装了红灯和绿灯.那么某天小明从家骑车去学校上学,经过三个路口抬头看到交通信号灯.
(1)请画树状图,列举小明看到交通信号灯可能出现的所有情况;
(2)求小明途经三个路口都遇到红灯的概率.
22.(8分)为全面贯彻党的教育方针,坚持“健康第一的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000(女80米)必考,足球、篮球、排球“三选一”……从2019年秋季新入学的七年级起开始实施,某1学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图。请根据两幅统计图中的信息回答下列问题:
(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图
(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?
(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.
23.(8分)解方程:(1)x2﹣1x+5=0(配方法) (2)(x+1)2=1x+1.
24.(8分)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
25.(10分)解方程:
(1)x2+4x﹣5=0
(2)x(2x+3)=4x+6
26.(10分)如图,∠MON=60°,OF平分∠MON,点A在射线OM上, P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.
(1)依题意补全图形;
(2)判断线段 AB,PB之间的数量关系,并证明;
(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、A
4、D
5、B
6、C
7、B
8、A
9、C
10、B
二、填空题(每小题3分,共24分)
11、.
12、
13、
14、
15、1
16、
17、-6<x<0或x>2;
18、或
三、解答题(共66分)
19、(1)见解析;(2)见解析,;(3)1.
20、此时火箭所在点处与发射站点处的距离约为.
21、(1)详见解析;共有8种等可能的结果;(2)
22、(1)21,图形见解析;(2)180;(3)
23、 (2)x2=3,x2=2;(2)x2=﹣2,x2=3
24、(1);(2)S=,运动1秒使△PBQ的面积最大,最大面积是;(3)t=或t=.
25、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2
26、(1)补全图形见解析; (2)AB=PB.证明见解析;(3)存在,.
江苏省吴江青云中学2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份江苏省吴江青云中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中,正确的是,下列事件中,是必然事件的是等内容,欢迎下载使用。
江苏省句容市崇明中学2023-2024学年数学九上期末学业水平测试模拟试题含答案: 这是一份江苏省句容市崇明中学2023-2024学年数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
江苏省镇江市实验2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份江苏省镇江市实验2023-2024学年数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,《九章算术》中记载一问题如下,如图,AB是⊙O的弦等内容,欢迎下载使用。