河南省许昌地区2023-2024学年九年级数学第一学期期末学业水平测试试题含答案
展开
这是一份河南省许昌地区2023-2024学年九年级数学第一学期期末学业水平测试试题含答案,共9页。试卷主要包含了下列事件是随机事件的是,下列说法正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
2.如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:
①
②当时四边形是正方形
③四边形的面积和周长都是定值
④连接,,则,其中正确的有( )
A.①②B.①②③C.①②④D.①②③④
3.二次函数中与的部分对应值如下表所示,则下列结论错误的是( )
A.
B.当时,的值随值的增大而减小
C.当时,
D.方程有两个不相等的实数根
4.若分式的运算结果为,则在中添加的运算符号为( )
A.+B.-C.+或÷D.-或×
5.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是
A.10(1+2x)=18.8B.=10
C.=18.8D.=18.8
6.用配方法解方程x2-4x+3=0时,原方程应变形为( )
A.(x+1)2=1B.(x-1)2=1C.(x+2)2=1D.(x-2)2=1
7.一个几何体的三视图如图所示,则该几何体的表面积为( )
A.4πB.3πC.2π+4D.3π+4
8.下列事件是随机事件的是( )
A.画一个三角形,其内角和是B.射击运动员射击一次,命中靶心
C.投掷一枚正六面体骰子,朝上一面的点数小于D.在只装了红球的不透明袋子里,摸出黑球
9.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度( )
A.变大B.变小C.不变D.不能确定
10.下列说法正确的是( )
A.一组对边相等且有一个角是直角的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线相等且互相垂直的四边形是正方形
D.对角线平分一组对角的平行四边形是菱形
二、填空题(每小题3分,共24分)
11.如图,圆锥的母线长为5,底面圆直径CD与高AB相等,则圆锥的侧面积为_____.
12.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.
13.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.
14.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.
15.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)
16.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm1.
17.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.
18.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.
三、解答题(共66分)
19.(10分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.
(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;
(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?
20.(6分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)
21.(6分)综合与探究:
操作发现:如图1,在中,,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接.则与的位置关系为平行;
探究证明:如图2,当是锐角三角形,时,将按照(1)中的方式,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接,
①探究与的位置关系,写出你的探究结论,并加以证明;
②探究与的位置关系,写出你的探究结论,并加以证明.
22.(8分)如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.
(1)图中AC边上的高为 个单位长度;
(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):
①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;
②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.
23.(8分)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m.
①用含m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,平移后的抛物线上是否存在点Q,使S△QMA=2S△PMA,若存在,请求出点Q的坐标;若不存在,请说明理由.
24.(8分)用铁片制作的圆锥形容器盖如图所示.
(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;
(2)已知OB=2 cm,SB=3 cm,
①计算容器盖铁皮的面积;
②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 .
A.6 cm×4 cm B.6 cm×4.5 cm C.7 cm×4 cm D.7 cm×4.5 cm
25.(10分)如图,中,,是的中点,于.
(1)求证:;
(2)当时,求的度数.
26.(10分)计算:
(1);
(2).
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、B
4、C
5、C
6、D
7、D
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、5π
12、(,).
13、1
14、180°
15、
16、35π.
17、
18、(2,10) 16
三、解答题(共66分)
19、(1);(2)当时,w有最大值,最大值为750元
20、此时梯子的顶端与地面的距离A'D的长是米
21、①,证明详见解析;②,证明详见解析.
22、(1);(2)①见解析,②见解析
23、(1)y=2x;(2)①点P的坐标为(2,m2﹣2m+4);②当m=1时,线段PB最短;(3)点Q坐标为(2+,6+2)或(2﹣,6﹣2).
24、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.
25、(1)详见解析;(2).
26、(1);(2)
相关试卷
这是一份湖北省部分地区2023-2024学年数学九年级第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2023-2024学年河南省南阳华龙中学数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了已知,则下列各式不成立的是,下列四个数中,最小数的是,如图,O为原点,点A的坐标为等内容,欢迎下载使用。
这是一份2023-2024学年江苏泰州地区九上数学期末学业水平测试模拟试题含答案,共6页。试卷主要包含了一组数据1,2,3,3,4,1等内容,欢迎下载使用。