浙江省宁波市惠贞书院2023-2024学年九上数学期末质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列约分正确的是( )
A.B.C.D.
2.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面(接缝忽略不计),则这个圆锥的底面直径是( )
A.3B.6
C.9D.12
3.如图,矩形AOBC,点C在反比例的图象上,若,则的长是( )
A.1B.2C.3D.4
4.若,则的值是( )
A.1B.2C.3D.4
5.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70°B.80°C.84°D.86°
6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )
A.AE=OEB.CE=DEC.OE=CED.∠AOC=60°
7.如图,直线////,若AB=6,BC=9,EF=6,则DE=( )
A.4B.6C.7D.9
8.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是( )
A.4B.5C.6D.7
9.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )
A.12πcm2B.15πcm2C.18πcm2D.24πcm2
10.边长等于6的正六边形的半径等于( )
A.6B.C.3D.
二、填空题(每小题3分,共24分)
11.计算:____________
12.已知点,都在反比例函数图象上,则____(填“”或“”或“”).
13.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是_____.
14.如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,OP,AB,设OP与AB相交于点C,若∠APB=60°,OC=2cm,则PC=_________cm.
15.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.
16.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.
17.如图,AC为圆O的弦,点B在弧AC上,若∠CBO=58°,∠CAO=20°,则∠AOB的度数为___________
18.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.
三、解答题(共66分)
19.(10分)如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.
(1)若A,E,O三点共线,求CF的长;
(2)求△CDF的面积的最小值.
20.(6分)如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.
21.(6分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,
(1)求S关于的函数表达式和的取值范围
(2)为何值时,S最大?最大为多少?
22.(8分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
23.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
24.(8分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为 ;
(3)试估算盒子里黑、白两种颜色的球各有多少个?
25.(10分)如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是矩形;
(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
26.(10分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.
(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;
(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、B
5、B
6、B
7、A
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、6
15、或
16、2.
17、76°
18、k≤且k≠﹣1
三、解答题(共66分)
19、 (1)CF=3;(2).
20、图形见解析;20a2.
21、 (1) S=-+2x (0
23、(1)y=x+3, y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,)
24、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只
25、 (1)证明见解析;(2)矩形ABCD的面积为16(cm2).
26、(1)(,x为整数) , (,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球的次数m
65
124
178
302
480
600
1800
摸到白球的频率
0.65
0.62
0.593
0.604
0.6
0.6
0.6
浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。
2023-2024学年浙江省宁波市九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年浙江省宁波市九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2023-2024学年浙江省宁波市镇海区九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年浙江省宁波市镇海区九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了已知等内容,欢迎下载使用。