湖北省云梦县2023-2024学年九上数学期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.如图,在平行四边形ABCD中,点M为AD边上一点,且,连接CM,对角线BD与CM相交于点N,若的面积等于3,则四边形ABNM的面积为
A.8B.9C.11D.12
2.若点,,在反比例函数的图像上,则的大小关系是( )
A.B.C.D.
3.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A.B.C.D.
4.边长相等的正方形与正六边形按如图方式拼接在一起,则的度数为( )
A.B.C.D.
5.若关于x的方程(m﹣1)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )
A.m≠1B.m=1C.m≥1D.m≠0
6.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等( )
A.70°B.65°C.55°D.35°
7.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是( )
A.B.C.D.
8.如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,,,则的度数为( )
A.38°B.48°C.58°D.68°
9.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值( )
A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5
10.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为( )
A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)
二、填空题(每小题3分,共24分)
11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1= .
12.反比例函数的图象经过点,,点是轴上一动点.当的值最小时,点的坐标是__________.
13.二次函数的图象如图所示,对称轴为.若关于的方程(为实数)在范围内有实数解,则的取值范围是__________.
14.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.
15.如图,在△ABC中,AD是BC上的高,tanB=cs∠DAC,若sinC=,BC=12,则AD的长_____.
16.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
17.三角形的三条边分别为5,5,6,则该三角形的内切圆半径为__________
18.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为_________cm.
三、解答题(共66分)
19.(10分)已知关于的一元二次方程 (是常量),它有两个不相等的实数根.
(1)求的取值范围;
(2)请你从或或三者中,选取一个符合(1)中条件的的数值代入原方程,求解出这个一元二次方程的根.
20.(6分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AC=8,CE=4,求弧BD的长.(结果保留π)
21.(6分)如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).
(1)当AE=8时,求EF的长;
(2)设AE=x,矩形EFPQ的面积为y.
①求y与x的函数关系式;
②当x为何值时,y有最大值,最大值是多少?
(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
22.(8分)一个不透明袋子中装有2个白球,3个黄球,除颜色外其它完全相同.将球摇匀后,从中摸出一个球不放回,再随机摸出一球,两次摸到的球颜色相同的概率是______.
23.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
24.(8分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.
(1)求证:AB2=AE·AD;
(2)若AE=2,ED=4,求图中阴影的面积.
25.(10分)仿照例题完成任务:
例:如图1,在网格中,小正方形的边长均为,点,,,都在格点上,与相交于点,求的值.
解析:连接,,导出,再根据勾股定理求得三角形各边长,然后利用三角函数解决问题.具体解法如下:
连接,,则,
,根据勾股定理可得:
,,,
,
是直角三角形,,
即.
任务:
(1)如图2,,,,四点均在边长为的正方形网格的格点上,线段,相交于点,求图中的正切值;
(2)如图3,,,均在边长为的正方形网格的格点上,请你直接写出的值.
26.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OA=OB,点C(﹣3,n)在直线l1上.
(1)求直线l1和直线OC的解析式;
(2)点D是点A关于y轴的对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于点E,求△BDE的面积.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、B
5、A
6、A
7、B
8、A
9、B
10、A
二、填空题(每小题3分,共24分)
11、.
12、
13、
14、(﹣8,4),(8,﹣4)
15、1
16、2
17、1.5
18、6
三、解答题(共66分)
19、(1);(2),
20、(1)见解析;(2)
21、(1)1;(2)①y=﹣x2+3x(0<x<12);②x=6时,y有最大值为9;(3)S=
22、
23、(1)详见解析;(1)①详见解析;②BP=AB.
24、 (1)见解析;(2) 2π-3.
25、(1)2;(2)1.
26、 (1)直线I1的解析式:y=2x+4,直线OC解析式y=x;(2)S△BDE=16.
湖北省随州市高新区2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份湖北省随州市高新区2023-2024学年九上数学期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况为,如图,该几何体的主视图是等内容,欢迎下载使用。
湖北省孝感市八校2023-2024学年九上数学期末学业质量监测试题含答案: 这是一份湖北省孝感市八校2023-2024学年九上数学期末学业质量监测试题含答案,共6页。试卷主要包含了下列计算正确的是,二次函数y=2-3的顶点坐标是,若反比例函数的图象经过点等内容,欢迎下载使用。
2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了的倒数是,点P,关于的一元二次方程的根的情况是等内容,欢迎下载使用。